Effects of B and N dopings and H2O adsorption on structural stability and field emission properties of cone-capped carbon nanotubes

The effects of B and N dopings and H2O adsorption on the structural stability and the field emission properties of cone-capped carbon nanotubes (CCCNTs) were investigated by using the density-functional theoretical calculation. The adsorption of H2O can increase the structural stability and decrease...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2011-11, Vol.20 (11), p.464-468
1. Verfasser: 王益军 王六定 杨敏 严诚
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of B and N dopings and H2O adsorption on the structural stability and the field emission properties of cone-capped carbon nanotubes (CCCNTs) were investigated by using the density-functional theoretical calculation. The adsorption of H2O can increase the structural stability and decrease the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO gap) of the CCCNTs. The strength of total electric field on the top of the H2O-adsorbed CCCNTs is larger than that of the B-doped and the N-doped CCCNTs, electrons will be emitted primarily from the H2O-adsorbed CCCNTs at the same applied voltage. Therefore, the H2O adsorption can lower the threshold voltage for the CCCNTs. While the B and the N dopings produce opposite effects. The HOMO-LUMO gap of the N-doped CCCNTs is the widest among all the gaps of the CCCNTs.
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/20/11/117304