Moderate energy impact analysis combining phenomenological contact law with localised damage and integral equation method

A computational impact analysis methodology has been developed, based on modal analysis and a local contact force-deflection model. The contact law is based on Hertz contact theory while contact stresses are elastic, defines a modified contact theory to take account of local permanent indentation, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of impact engineering 2012-05, Vol.43, p.29-39
Hauptverfasser: McMillan, A.J., Monroy Aceves, C., Sutcliffe, M.P.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A computational impact analysis methodology has been developed, based on modal analysis and a local contact force-deflection model. The contact law is based on Hertz contact theory while contact stresses are elastic, defines a modified contact theory to take account of local permanent indentation, and considers elastic recovery during unloading. The model was validated experimentally through impact testing of glass-carbon hybrid braided composite panels. Specimens were mounted in a support frame and the contact force was inferred from the deceleration of the impactor, measured by high-speed photography. A Finite Element analysis of the panel and support frame assembly was performed to compute the modal responses. The new contact model performed well in predicting the peak forces and impact durations for moderate energy impacts (15 J), where contact stresses locally exceed the linear elastic limit and damage may be deemed to have occurred. C-scan measurements revealed substantial damage for impact energies in the range of 30–50 J. For this regime the new model predictions might be improved by characterisation of the contact law hysteresis during the unloading phase, and a modification of the elastic vibration response in line with damage levels acquired during the impact. ► We demonstrate a computational impact analysis methodology based on modal analysis. ► The contact force-compliance relationship includes measured effects of damage. ► Experimental impact tests were performed. ► Impact test damage was measured using C-scan. ► Computational results show good force history prediction.
ISSN:0734-743X
1879-3509
DOI:10.1016/j.ijimpeng.2011.11.008