On the comparison of microstructural characteristics and mechanical properties of high-vanadium austenitic manganese steels with the Hadfield steel

► Mechanical properties of HV-AMS are affected by the type and distribution of VCs. ► Solution treatment of Hadfield steels has no significant effect on HV-AMS alloys. ► HV-AMS alloys have superior wear resistance compared with Hadfield steels. In this study, high-vanadium austenitic manganese steel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2012, Vol.532, p.260-266
Hauptverfasser: Moghaddam, E.G., Varahram, N., Davami, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:► Mechanical properties of HV-AMS are affected by the type and distribution of VCs. ► Solution treatment of Hadfield steels has no significant effect on HV-AMS alloys. ► HV-AMS alloys have superior wear resistance compared with Hadfield steels. In this study, high-vanadium austenitic manganese steel (HV-AMS) alloys and the standard Hadfield steel were investigated. The microstructure of these high-vanadium alloyed Hadfield steels was studied thoroughly using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) and was compared to the Hadfield steel. The hardness and unnotched Charpy impact strength of HV-AMS alloys and Hadfield steel were examined at ambient temperature in the as-cast and heat-treated conditions. A pin-on-disk wear test at linear speed of 10 m/min and a 55 N normal load was employed to evaluate the wear behavior of both steel samples. Microstructural results showed that varying the carbon content in HV-AMS alloys can affect the vanadium carbide morphology and its distribution in the austenite matrix which leads to considerable changes of the mechanical properties. Abrasion test revealed that HV-AMS alloys have superior wear resistance, about 5 times of the standard Hadfield steel.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2011.10.089