Multifunctional Protein-Enabled Patterning on Arrayed Ferroelectric Materials

This study demonstrates a biological route to programming well-defined protein-inorganic interfaces with an arrayed geometry via modular peptide tag technology. To illustrate this concept, we designed a model multifunctional fusion protein, which simultaneously displays a maltose-binding protein (MB...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2012-04, Vol.4 (4), p.1865-1871
Hauptverfasser: Hnilova, M, Liu, X, Yuca, E, Jia, C, Wilson, B, Karatas, A. Y, Gresswell, C, Ohuchi, F, Kitamura, K, Tamerler, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study demonstrates a biological route to programming well-defined protein-inorganic interfaces with an arrayed geometry via modular peptide tag technology. To illustrate this concept, we designed a model multifunctional fusion protein, which simultaneously displays a maltose-binding protein (MBP), a green fluorescence protein (GFPuv) and an inorganic-binding peptide (AgBP2C). The fused combinatorially selected AgBP2C tag controls and site-directs the multifunctional fusion protein to immobilize on silver nanoparticle arrays that are fabricated on specific domain surfaces of ferroelectric LiNbO3 via photochemical deposition and in situ synthesis. Our combined peptide-assisted biological and ferroelectric lithography approach offers modular design and versatility in tailoring surface reactivity for fabrication of nanoscale devices in environmentally benign conditions.
ISSN:1944-8244
1944-8252
DOI:10.1021/am300177t