Interaction between temperature and photoperiod in regulation of flowering time in rice

Photoperiod and temperature are two pivotal regulatory factors of plant flowering. The floral transition of plants depends on accurate measurement of changes in photoperiod and temperature. The flowering time of rice (Oryza sativa) as a facultative short-day (SD) plant is delayed under long-day (LD)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Life sciences 2012-03, Vol.55 (3), p.241-249
Hauptverfasser: Song, YuanLi, Gao, ZhiChao, Luan, WeiJiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photoperiod and temperature are two pivotal regulatory factors of plant flowering. The floral transition of plants depends on accurate measurement of changes in photoperiod and temperature. The flowering time of rice (Oryza sativa) as a facultative short-day (SD) plant is delayed under long-day (LD) and/or low temperature conditions. To elucidate the regulatory functions of photoperiod and temperature on flowering time in rice, we systematically analyzed the expression and regulation of several key genes (Hd3a, RFT1, Ehdl, Ghd7, RID1/Ehd2/OsIdl, Se5) involved in the photoperiodic flowering regulatory pathway under different temperature and photoperiod treatments using a photoperiod-insensitive mutant and wild type plants. Our re- sults indicate that the Ehdl-Hd3a/RFT1 pathway is common to and conserved in both the photoperiodic and temperature flow- ering regulatory pathways. Expression of Ehdl, Hd3a and RFT1 is dramatically reduced at low temperature (23~C), suggesting that suppression of Ehdl, Hd3a and RFT1 transcription is an essential cause of delayed flowering under low temperature con- dition. Under LD condition, Ghd7 mRNA levels are promoted at low temperature (23~C) compared with normal temperature condition (28℃), suggesting low temperature and LD treatment have a synergistic role in the expression of Ghd7. Therefore, upregulation of Ghd7 might be a crucial cause of delayed flowering under low temperature condition. We also analyzed Hdl regulatory relationships in the photoperiodic flowering pathway, and found that Hdl can negatively regulate Ehdl transcription under LD condition. In addition, Hdl can also positively regulate Ghd7 transcription under LD condition, suggesting that the heading-date of rice under LD condition is also regulated by the Hdl-Ghd7-Ehdl-RFT1 pathway.
ISSN:1674-7305
1869-1889
DOI:10.1007/s11427-012-4300-4