Food Web Structure and Trophic Control in Central Puget Sound

We developed a food web model of central Puget Sound to provide science-based support for ecosystem-based management and to refine our understanding of bottom-up and top-down trophic forcing. Phytoplankton accounted for a large fraction of total biomass, total throughput, and caused considerable bot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Estuaries and coasts 2012-05, Vol.35 (3), p.821-838
Hauptverfasser: Harvey, Chris J., Williams, Gregory D., Levin, Phillip S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We developed a food web model of central Puget Sound to provide science-based support for ecosystem-based management and to refine our understanding of bottom-up and top-down trophic forcing. Phytoplankton accounted for a large fraction of total biomass, total throughput, and caused considerable bottom-up effects in most functional groups in a dynamic simulation fit to time series data from 1981 to 2000. Top-down control was most apparent in the case of bald eagles (Haliaeetus leucocephalus), which exhibited keystone tendencies and appeared capable of causing trophic cascades. Increasing top-down control in several predator-prey relationships improved model fits to time series data from 1981 to 2000, but not as much as introducing non-equilibrium dynamics (biomass accumulation terms) to several key vertebrates. Fishing had little effect on system dynamics. Our model appears well-suited for addressing strategic, scenario-based questions of how the community as a whole will respond to management actions.
ISSN:1559-2723
1559-2731
DOI:10.1007/s12237-012-9483-1