Functional recovery after spinal cord injury in dogs treated with a combination of Matrigel and neural-induced adipose-derived mesenchymal Stem cells

Abstract Background aims Previous studies have reported that scaffold or cell-based transplantation may improve functional recovery following spinal cord injury (SCI), but these results were based on neuronal regeneration and cell replacement. In this study, we investigated whether a combination of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytotherapy (Oxford, England) England), 2012-05, Vol.14 (5), p.584-597
Hauptverfasser: Park, Sung-Su, Lee, Yu Jin, Lee, Seung Hoon, Lee, Donghae, Choi, Kyuseok, Kim, Wan-Hee, Kweon, Oh-Kyeong, Han, Ho Jae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background aims Previous studies have reported that scaffold or cell-based transplantation may improve functional recovery following spinal cord injury (SCI), but these results were based on neuronal regeneration and cell replacement. In this study, we investigated whether a combination of Matrigel and neural-induced mesenchymal stem cells (NMSC) improved hindlimb function in dogs with SCI, and what mechanisms were involved. Methods We pre-differentiated canine adipose-derived mesenchymal stem cells into NMSC. A total of 12 dogs subjected to SCI procedures were assigned to one of the following three transplantation treatment groups: phosphate-buffered saline (PBS); Matrigel; or Matrigel seeded with NMSC. Treatment occurred 1 week after SCI. Basso, Beattie and Bresnahan (B.B.B.) and Tarlov scores, histopathology, immunofluorescence staining and Western blot analysis were used to evaluate the treatment effects. Results Compared with dogs administered PBS or Matrigel alone, dogs treated with Matrigel + NMSC showed significantly better functional recovery 8 weeks after transplantation. Histology and immunochemical analysis revealed that the combination of Matrigel + NMSC reduced fibrosis from secondary injury processes and improved neuronal regeneration more than the other treatments. In addition, the combination of Matrigel + NMSC decreased the expression of inflammation and/or astrogliosis markers. Increased expressions of intracellular molecules related to neuronal extension, neuronal markers and neurotrophic factors were also found in the Matrigel + NMSC group. However, the expression of nestin as a neural stem cell marker was increased with Matrigel alone Conclusions The combination of Matrigel + NMSC produced beneficial effects in dogs with regard to functional recovery following SCI through enhancement of anti-inflammation, anti-astrogliosis, neuronal extension and neuronal regeneration effects.
ISSN:1465-3249
1477-2566
DOI:10.3109/14653249.2012.658913