Inventory Policy with Parametric Demand: Operational Statistics, Linear Correction, and Regression

In this paper, we consider data‐driven approaches to the problem of inventory control. We first consider the approach of operational statistics and review related results which enable us to maximize a priori expected profit uniformly over all parameter values, when the demand distribution is known u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Production and operations management 2012-03, Vol.21 (2), p.291-308
Hauptverfasser: Ramamurthy, Vivek, George Shanthikumar, J., Shen, Zuo-Jun Max
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider data‐driven approaches to the problem of inventory control. We first consider the approach of operational statistics and review related results which enable us to maximize a priori expected profit uniformly over all parameter values, when the demand distribution is known up to the location and scale parameters. For the case of the unknown shape parameter, we first suggest a heuristic approach based on operational statistics to obtain improved ordering policies and illustrate the same for the case of a Pareto demand distribution. In more general cases where the heuristic is not applicable, we suggest linear correction and support vector regression approaches to better estimate ordering policies, and illustrate these using a Gamma demand distribution. In certain cases, our proposed approaches are found to yield significant improvements.
ISSN:1059-1478
1937-5956
DOI:10.1111/j.1937-5956.2011.01261.x