Regularized iterative reconstruction in tensor tomography using gradient constraints

This paper investigates the iterative reconstruction of tensor fields in diffusion tensor magnetic resonance imaging (MRI). The gradient constraints on eigenvalue and tensor component images of the diffusion tensor were exploited. A computer-generated phantom was used in order to simulate the diffus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2002-10, Vol.49 (5), p.2387-2393
Hauptverfasser: Panin, V.Y., Zeng, G.L., Gullberg, G.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the iterative reconstruction of tensor fields in diffusion tensor magnetic resonance imaging (MRI). The gradient constraints on eigenvalue and tensor component images of the diffusion tensor were exploited. A computer-generated phantom was used in order to simulate the diffusion tensor in a cardiac MRI study with a diffusion model that depends on the fiber structure of the myocardium. Computer simulations verify that the regularized methods provide an improved reconstruction of the tensor principal directions. The reconstruction from experimentally acquired data is also presented.
ISSN:0018-9499
1558-1578
DOI:10.1109/TNS.2002.803684