Combining ability for grain chemistry quality traits in a white oat diallelic cross
There has been a strong demand for oat genotypes that contain caryopsis with high chemical quality which can suit the different market niches. Therefore, the objectives of this study were to assess the general (GCA) and specific combining ability (SCA) of white oat cultivars through diallelic crosse...
Gespeichert in:
Veröffentlicht in: | Euphytica 2012-05, Vol.185 (1), p.139-156 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There has been a strong demand for oat genotypes that contain caryopsis with high chemical quality which can suit the different market niches. Therefore, the objectives of this study were to assess the general (GCA) and specific combining ability (SCA) of white oat cultivars through diallelic crosses providing information about the genetic effects on expression of grain chemical quality components. Also, it was aimed to estimate the heterosis on F
1
and F
2
generations and the vigor loss due to inbreeding. During 2008, 21 hybrid populations F
1
and F
2
were obtained from artificial crossing among seven Brazilian white oat cultivars, following the complete diallel design, without considering the reciprocals. These populations and their parents were evaluated in the 2009 season in the experimental field in Capão do Leão, RS, Brazil. The higher values of mean squares associated to GCA indicates a strong contribution of additive genetic effects to the expression of grain chemical components. The parents tested showed a tendency to develop progeny with negative heterosis regarding protein, lipid, β-glucan and soluble dietary fiber in the grain, and positive for the content of nitrogen-free extract, total and insoluble dietary fiber. IAC 7 features a potential parent for obtaining grains with high protein and dietary fiber content, and low caloric content, fit to human diet. Meanwhile, UPF 15 and FAPA Louise can represent donors of alleles to increase lipid contents, while FAPA Louise and URS Guapa can be used to raise the grain nitrogen-free extract contents of lines intended for animal feeding. |
---|---|
ISSN: | 0014-2336 1573-5060 |
DOI: | 10.1007/s10681-012-0641-0 |