Expression and purification of recombinant hemoglobin I from Lucina pectinata

Hemoglobin I (HbI) from Lucina pectinata reacts with hydrogen sulfide to form the ferric sulfide complex needed to transport H2S to the bacterial endosymbiont. To further study HbI, expression studies of this protein were performed in Escherichia coli. This is the first time that the recombinant HbI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Protein Chemistry 2001-05, Vol.20 (4), p.311-315
Hauptverfasser: Rosado-Ruiz, T, Antommattei-Pérez, F M, Cadilla, C L, López-Garriga, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hemoglobin I (HbI) from Lucina pectinata reacts with hydrogen sulfide to form the ferric sulfide complex needed to transport H2S to the bacterial endosymbiont. To further study HbI, expression studies of this protein were performed in Escherichia coli. This is the first time that the recombinant HbI was produced using a recombinant DNA expression system. Hemoglobin I cDNA was amplified and cloned into the TOPO-PBAD expression vector, which contains a fusion tag of six histidine residues (6XHis tag). Plasmid clone sequence analysis was carried out in order to ensure that the insert was in the correct reading frame for proper protein expression in E. coli. The expression of recombinant HbI was optimal when induced for 5 hr with 0.002% of L-arabinose as detected by Western blot analysis. The proto-porphyrin group was inserted into the recombinant HbI. Purification of the heme-bound recombinant protein was performed under native conditions by affinity chromatography using Ni-NTA and Probond resins. The sodium dithionite-reduced recombinant protein presented a shift from the Soret band at 413-435 nm, indicating the presence of the heme group in the adequate amino acid environment of HbI. These results indicate that recombinant HbI from Lucina pectinata can be successfully expressed in a prokaryotic system retaining its activity toward reduction, oxidation, and ligand binding.
ISSN:0277-8033
1572-3887
1573-4943
DOI:10.1023/A:1010901701841