An Ultra-Low Reset Current Cross-Point Phase Change Memory With Carbon Nanotube Electrodes

Solid-state memory technology is undergoing a renaissance of new materials and novel device concepts for higher scalability as the mainstream technology, i.e., Flash, is approaching physical limits. Emerging memory technologies, which have unique characteristics not available in Flash, are leading t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2012-04, Vol.59 (4), p.1155-1163
Hauptverfasser: Jiale Liang, Jeyasingh, R. G. D., Hong-Yu Chen, Wong, H. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solid-state memory technology is undergoing a renaissance of new materials and novel device concepts for higher scalability as the mainstream technology, i.e., Flash, is approaching physical limits. Emerging memory technologies, which have unique characteristics not available in Flash, are leading transformations in the design of the memory hierarchy. Phase change memory (PCM) is a promising candidate for the next-generation nonvolatile-memory technology. It has been extensively studied for its electrical properties and material scalability. Yet, questions remain unanswered as to what extent a functional PCM cell can be ultimately scaled to and what properties a PCM cell has at the single-digit nanometer scale. In this paper, we demonstrated a fully functional cross-point PCM cell working close to its ultimate size-scaling limit by using carbon nanotubes (CNTs) as the memory electrode. The utilization of CNT electrode brings the lithography-independent critical dimension down to 1.2 nm and contributes to a large reduction of the reset programming current to 1.4 μA and the programming energy to 210 fJ using a 10 ns reset pulse. Measured electrical characteristics validate the advantage of further device area scaling on reducing the programming current of PCM cells and confirm the potential viability of a highly scaled ultradense PCM array down to the bottom electrode contact area that corresponds to a 1.8 nm node technology.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2012.2184542