COMPUTING ISOLATED SINGULAR SOLUTIONS OF POLYNOMIAL SYSTEMS: CASE OF BREADTH ONE

We present a symbolic-numeric method to refine an approximate isolated singular solution [Symbol] = ([Symbol]₁,... ,[Symbol] n ) of a polynomial system F = {f₁, ..., f n }, when the Jacobian matrix of F evaluated at × has corank one approximately. Our new approach is based on the regularized Newton...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2012-01, Vol.50 (1), p.354-372
Hauptverfasser: Li, NAN, ZHI, LIHONG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 372
container_issue 1
container_start_page 354
container_title SIAM journal on numerical analysis
container_volume 50
creator Li, NAN
ZHI, LIHONG
description We present a symbolic-numeric method to refine an approximate isolated singular solution [Symbol] = ([Symbol]₁,... ,[Symbol] n ) of a polynomial system F = {f₁, ..., f n }, when the Jacobian matrix of F evaluated at × has corank one approximately. Our new approach is based on the regularized Newton iteration and the computation of differential conditions satisfied at the approximate singular solution. The size of matrices involved in our algorithm is bounded by n×n. The algorithm converges quadratically if [Symbol] is close to the isolated exact singular solution.
doi_str_mv 10.1137/110827247
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_928479049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41582728</jstor_id><sourcerecordid>41582728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-f6881eedb3a21932b586d3678233fbd307a8c24d61705837ea03befc3e2b6633</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqVw4AGQLG4cArY3iR1uIU3bSGlc1emhpyg_jkQFpNjtoW-Pq6KeVrPzaXc0CD1S8kop8DdKiWCc-fwKjSiJAo9TTq7RiBAIPeqz6BbdWbslTgsKI7RM5GK5LrNihjMl87hMJ1g5tc7jFXYLZ8lCYTnFS5lvCrnI4hyrjSrThXrHSazSk_exSuNJOceySO_RTV9_Wf3wP8eonKZlMvdyOcuSOPdaoLD3-lAIqnXXQM1oBKwJRNhByAUD6JsOCK9Fy_wudPEDAVzXBBrdt6BZE4YAY_R8Prszw-9B2321HQ7mx32sIiZ8HhE_ctDLGWrNYK3RfbUzn9-1OVaUVKe6qktdjn06s1u7H8wF9GlwAgT8AS8NXVM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>928479049</pqid></control><display><type>article</type><title>COMPUTING ISOLATED SINGULAR SOLUTIONS OF POLYNOMIAL SYSTEMS: CASE OF BREADTH ONE</title><source>SIAM Journals Online</source><source>Jstor Complete Legacy</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Li, NAN ; ZHI, LIHONG</creator><creatorcontrib>Li, NAN ; ZHI, LIHONG</creatorcontrib><description>We present a symbolic-numeric method to refine an approximate isolated singular solution [Symbol] = ([Symbol]₁,... ,[Symbol] n ) of a polynomial system F = {f₁, ..., f n }, when the Jacobian matrix of F evaluated at × has corank one approximately. Our new approach is based on the regularized Newton iteration and the computation of differential conditions satisfied at the approximate singular solution. The size of matrices involved in our algorithm is bounded by n×n. The algorithm converges quadratically if [Symbol] is close to the isolated exact singular solution.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/110827247</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Algorithms ; Approximation ; Differential operators ; Jacobians ; Mathematical vectors ; Matrices ; Newtons method ; Polynomials ; Zero vectors</subject><ispartof>SIAM journal on numerical analysis, 2012-01, Vol.50 (1), p.354-372</ispartof><rights>Copyright ©2012 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 2012 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-f6881eedb3a21932b586d3678233fbd307a8c24d61705837ea03befc3e2b6633</citedby><cites>FETCH-LOGICAL-c313t-f6881eedb3a21932b586d3678233fbd307a8c24d61705837ea03befc3e2b6633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41582728$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41582728$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3171,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Li, NAN</creatorcontrib><creatorcontrib>ZHI, LIHONG</creatorcontrib><title>COMPUTING ISOLATED SINGULAR SOLUTIONS OF POLYNOMIAL SYSTEMS: CASE OF BREADTH ONE</title><title>SIAM journal on numerical analysis</title><description>We present a symbolic-numeric method to refine an approximate isolated singular solution [Symbol] = ([Symbol]₁,... ,[Symbol] n ) of a polynomial system F = {f₁, ..., f n }, when the Jacobian matrix of F evaluated at × has corank one approximately. Our new approach is based on the regularized Newton iteration and the computation of differential conditions satisfied at the approximate singular solution. The size of matrices involved in our algorithm is bounded by n×n. The algorithm converges quadratically if [Symbol] is close to the isolated exact singular solution.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Differential operators</subject><subject>Jacobians</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Newtons method</subject><subject>Polynomials</subject><subject>Zero vectors</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kM1OwzAQhC0EEqVw4AGQLG4cArY3iR1uIU3bSGlc1emhpyg_jkQFpNjtoW-Pq6KeVrPzaXc0CD1S8kop8DdKiWCc-fwKjSiJAo9TTq7RiBAIPeqz6BbdWbslTgsKI7RM5GK5LrNihjMl87hMJ1g5tc7jFXYLZ8lCYTnFS5lvCrnI4hyrjSrThXrHSazSk_exSuNJOceySO_RTV9_Wf3wP8eonKZlMvdyOcuSOPdaoLD3-lAIqnXXQM1oBKwJRNhByAUD6JsOCK9Fy_wudPEDAVzXBBrdt6BZE4YAY_R8Prszw-9B2321HQ7mx32sIiZ8HhE_ctDLGWrNYK3RfbUzn9-1OVaUVKe6qktdjn06s1u7H8wF9GlwAgT8AS8NXVM</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Li, NAN</creator><creator>ZHI, LIHONG</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20120101</creationdate><title>COMPUTING ISOLATED SINGULAR SOLUTIONS OF POLYNOMIAL SYSTEMS: CASE OF BREADTH ONE</title><author>Li, NAN ; ZHI, LIHONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-f6881eedb3a21932b586d3678233fbd307a8c24d61705837ea03befc3e2b6633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Differential operators</topic><topic>Jacobians</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Newtons method</topic><topic>Polynomials</topic><topic>Zero vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, NAN</creatorcontrib><creatorcontrib>ZHI, LIHONG</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, NAN</au><au>ZHI, LIHONG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COMPUTING ISOLATED SINGULAR SOLUTIONS OF POLYNOMIAL SYSTEMS: CASE OF BREADTH ONE</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>50</volume><issue>1</issue><spage>354</spage><epage>372</epage><pages>354-372</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>We present a symbolic-numeric method to refine an approximate isolated singular solution [Symbol] = ([Symbol]₁,... ,[Symbol] n ) of a polynomial system F = {f₁, ..., f n }, when the Jacobian matrix of F evaluated at × has corank one approximately. Our new approach is based on the regularized Newton iteration and the computation of differential conditions satisfied at the approximate singular solution. The size of matrices involved in our algorithm is bounded by n×n. The algorithm converges quadratically if [Symbol] is close to the isolated exact singular solution.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/110827247</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2012-01, Vol.50 (1), p.354-372
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_928479049
source SIAM Journals Online; Jstor Complete Legacy; JSTOR Mathematics & Statistics
subjects Algebra
Algorithms
Approximation
Differential operators
Jacobians
Mathematical vectors
Matrices
Newtons method
Polynomials
Zero vectors
title COMPUTING ISOLATED SINGULAR SOLUTIONS OF POLYNOMIAL SYSTEMS: CASE OF BREADTH ONE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COMPUTING%20ISOLATED%20SINGULAR%20SOLUTIONS%20OF%20POLYNOMIAL%20SYSTEMS:%20CASE%20OF%20BREADTH%20ONE&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Li,%20NAN&rft.date=2012-01-01&rft.volume=50&rft.issue=1&rft.spage=354&rft.epage=372&rft.pages=354-372&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/110827247&rft_dat=%3Cjstor_proqu%3E41582728%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=928479049&rft_id=info:pmid/&rft_jstor_id=41582728&rfr_iscdi=true