COMPUTING ISOLATED SINGULAR SOLUTIONS OF POLYNOMIAL SYSTEMS: CASE OF BREADTH ONE

We present a symbolic-numeric method to refine an approximate isolated singular solution [Symbol] = ([Symbol]₁,... ,[Symbol] n ) of a polynomial system F = {f₁, ..., f n }, when the Jacobian matrix of F evaluated at × has corank one approximately. Our new approach is based on the regularized Newton...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2012-01, Vol.50 (1), p.354-372
Hauptverfasser: Li, NAN, ZHI, LIHONG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a symbolic-numeric method to refine an approximate isolated singular solution [Symbol] = ([Symbol]₁,... ,[Symbol] n ) of a polynomial system F = {f₁, ..., f n }, when the Jacobian matrix of F evaluated at × has corank one approximately. Our new approach is based on the regularized Newton iteration and the computation of differential conditions satisfied at the approximate singular solution. The size of matrices involved in our algorithm is bounded by n×n. The algorithm converges quadratically if [Symbol] is close to the isolated exact singular solution.
ISSN:0036-1429
1095-7170
DOI:10.1137/110827247