Blocks and Cut Vertices of the Buneman Graph

Given a set $\Sigma$ of bipartitions of some finite set $X$ of cardinality at least $2$, one can associate to $\Sigma$ a canonical $X$-labeled graph $\mathcal{B}(\Sigma)$, called the Buneman graph. This graph has several interesting mathematical properties--for example, it is a median network and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on discrete mathematics 2011-01, Vol.25 (4), p.1902-1919
Hauptverfasser: Dress, A. W. M., Huber, K. T., Koolen, J., Moulton, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1919
container_issue 4
container_start_page 1902
container_title SIAM journal on discrete mathematics
container_volume 25
creator Dress, A. W. M.
Huber, K. T.
Koolen, J.
Moulton, V.
description Given a set $\Sigma$ of bipartitions of some finite set $X$ of cardinality at least $2$, one can associate to $\Sigma$ a canonical $X$-labeled graph $\mathcal{B}(\Sigma)$, called the Buneman graph. This graph has several interesting mathematical properties--for example, it is a median network and therefore an isometric subgraph of a hypercube. It is commonly used as a tool in studies of DNA sequences gathered from populations. In this paper, we present some results concerning the cut vertices of $\mathcal{B}(\Sigma)$, i.e., vertices whose removal disconnect the graph, as well as its blocks or $2$-connected components--results that yield, in particular, an intriguing generalization of the well-known fact that $\mathcal{B}(\Sigma)$ is a tree if and only if any two splits in $\Sigma$ are compatible.
doi_str_mv 10.1137/090764360
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_928467240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611423311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-1cc9af6b62ba1d93f4b6307c4be968314eefe4f5de566d7d2d977e27034f7d303</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EEqEw8A8sNiQCzx-x45FGUJAqsQCr5djPakubBDsZ-Pe0KmK6dzi6VzqEXDO4Z0zoBzCglRQKTkjBwFSlZlKdkgLqfZc1sHNykfMGgEnJqoLczbe9_8rUdYE200g_MY1rj5n2kY4rpPOpw53r6CK5YXVJzqLbZrz6yxn5eH56b17K5dvitXlclp5XaiyZ98ZF1SreOhaMiLJVArSXLRpVCyYRI8pYBayUCjrwYLRGrkHIqIMAMSM3x90h9d8T5tFu-il1-0treC2V5vIA3R4hn_qcE0Y7pPXOpR_LwB5c2H8X4heEuk5T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>928467240</pqid></control><display><type>article</type><title>Blocks and Cut Vertices of the Buneman Graph</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Dress, A. W. M. ; Huber, K. T. ; Koolen, J. ; Moulton, V.</creator><creatorcontrib>Dress, A. W. M. ; Huber, K. T. ; Koolen, J. ; Moulton, V.</creatorcontrib><description>Given a set $\Sigma$ of bipartitions of some finite set $X$ of cardinality at least $2$, one can associate to $\Sigma$ a canonical $X$-labeled graph $\mathcal{B}(\Sigma)$, called the Buneman graph. This graph has several interesting mathematical properties--for example, it is a median network and therefore an isometric subgraph of a hypercube. It is commonly used as a tool in studies of DNA sequences gathered from populations. In this paper, we present some results concerning the cut vertices of $\mathcal{B}(\Sigma)$, i.e., vertices whose removal disconnect the graph, as well as its blocks or $2$-connected components--results that yield, in particular, an intriguing generalization of the well-known fact that $\mathcal{B}(\Sigma)$ is a tree if and only if any two splits in $\Sigma$ are compatible.</description><identifier>ISSN: 0895-4801</identifier><identifier>EISSN: 1095-7146</identifier><identifier>DOI: 10.1137/090764360</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Graphs</subject><ispartof>SIAM journal on discrete mathematics, 2011-01, Vol.25 (4), p.1902-1919</ispartof><rights>[Copyright] © 2011 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-1cc9af6b62ba1d93f4b6307c4be968314eefe4f5de566d7d2d977e27034f7d303</citedby><cites>FETCH-LOGICAL-c256t-1cc9af6b62ba1d93f4b6307c4be968314eefe4f5de566d7d2d977e27034f7d303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27903,27904</link.rule.ids></links><search><creatorcontrib>Dress, A. W. M.</creatorcontrib><creatorcontrib>Huber, K. T.</creatorcontrib><creatorcontrib>Koolen, J.</creatorcontrib><creatorcontrib>Moulton, V.</creatorcontrib><title>Blocks and Cut Vertices of the Buneman Graph</title><title>SIAM journal on discrete mathematics</title><description>Given a set $\Sigma$ of bipartitions of some finite set $X$ of cardinality at least $2$, one can associate to $\Sigma$ a canonical $X$-labeled graph $\mathcal{B}(\Sigma)$, called the Buneman graph. This graph has several interesting mathematical properties--for example, it is a median network and therefore an isometric subgraph of a hypercube. It is commonly used as a tool in studies of DNA sequences gathered from populations. In this paper, we present some results concerning the cut vertices of $\mathcal{B}(\Sigma)$, i.e., vertices whose removal disconnect the graph, as well as its blocks or $2$-connected components--results that yield, in particular, an intriguing generalization of the well-known fact that $\mathcal{B}(\Sigma)$ is a tree if and only if any two splits in $\Sigma$ are compatible.</description><subject>Applied mathematics</subject><subject>Graphs</subject><issn>0895-4801</issn><issn>1095-7146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kD1PwzAURS0EEqEw8A8sNiQCzx-x45FGUJAqsQCr5djPakubBDsZ-Pe0KmK6dzi6VzqEXDO4Z0zoBzCglRQKTkjBwFSlZlKdkgLqfZc1sHNykfMGgEnJqoLczbe9_8rUdYE200g_MY1rj5n2kY4rpPOpw53r6CK5YXVJzqLbZrz6yxn5eH56b17K5dvitXlclp5XaiyZ98ZF1SreOhaMiLJVArSXLRpVCyYRI8pYBayUCjrwYLRGrkHIqIMAMSM3x90h9d8T5tFu-il1-0treC2V5vIA3R4hn_qcE0Y7pPXOpR_LwB5c2H8X4heEuk5T</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Dress, A. W. M.</creator><creator>Huber, K. T.</creator><creator>Koolen, J.</creator><creator>Moulton, V.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20110101</creationdate><title>Blocks and Cut Vertices of the Buneman Graph</title><author>Dress, A. W. M. ; Huber, K. T. ; Koolen, J. ; Moulton, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-1cc9af6b62ba1d93f4b6307c4be968314eefe4f5de566d7d2d977e27034f7d303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied mathematics</topic><topic>Graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dress, A. W. M.</creatorcontrib><creatorcontrib>Huber, K. T.</creatorcontrib><creatorcontrib>Koolen, J.</creatorcontrib><creatorcontrib>Moulton, V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dress, A. W. M.</au><au>Huber, K. T.</au><au>Koolen, J.</au><au>Moulton, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blocks and Cut Vertices of the Buneman Graph</atitle><jtitle>SIAM journal on discrete mathematics</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>25</volume><issue>4</issue><spage>1902</spage><epage>1919</epage><pages>1902-1919</pages><issn>0895-4801</issn><eissn>1095-7146</eissn><abstract>Given a set $\Sigma$ of bipartitions of some finite set $X$ of cardinality at least $2$, one can associate to $\Sigma$ a canonical $X$-labeled graph $\mathcal{B}(\Sigma)$, called the Buneman graph. This graph has several interesting mathematical properties--for example, it is a median network and therefore an isometric subgraph of a hypercube. It is commonly used as a tool in studies of DNA sequences gathered from populations. In this paper, we present some results concerning the cut vertices of $\mathcal{B}(\Sigma)$, i.e., vertices whose removal disconnect the graph, as well as its blocks or $2$-connected components--results that yield, in particular, an intriguing generalization of the well-known fact that $\mathcal{B}(\Sigma)$ is a tree if and only if any two splits in $\Sigma$ are compatible.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/090764360</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-4801
ispartof SIAM journal on discrete mathematics, 2011-01, Vol.25 (4), p.1902-1919
issn 0895-4801
1095-7146
language eng
recordid cdi_proquest_journals_928467240
source LOCUS - SIAM's Online Journal Archive
subjects Applied mathematics
Graphs
title Blocks and Cut Vertices of the Buneman Graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A39%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blocks%20and%20Cut%20Vertices%20of%20the%20Buneman%20Graph&rft.jtitle=SIAM%20journal%20on%20discrete%20mathematics&rft.au=Dress,%20A.%20W.%20M.&rft.date=2011-01-01&rft.volume=25&rft.issue=4&rft.spage=1902&rft.epage=1919&rft.pages=1902-1919&rft.issn=0895-4801&rft.eissn=1095-7146&rft_id=info:doi/10.1137/090764360&rft_dat=%3Cproquest_cross%3E2611423311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=928467240&rft_id=info:pmid/&rfr_iscdi=true