Blocks and Cut Vertices of the Buneman Graph

Given a set $\Sigma$ of bipartitions of some finite set $X$ of cardinality at least $2$, one can associate to $\Sigma$ a canonical $X$-labeled graph $\mathcal{B}(\Sigma)$, called the Buneman graph. This graph has several interesting mathematical properties--for example, it is a median network and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on discrete mathematics 2011-01, Vol.25 (4), p.1902-1919
Hauptverfasser: Dress, A. W. M., Huber, K. T., Koolen, J., Moulton, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a set $\Sigma$ of bipartitions of some finite set $X$ of cardinality at least $2$, one can associate to $\Sigma$ a canonical $X$-labeled graph $\mathcal{B}(\Sigma)$, called the Buneman graph. This graph has several interesting mathematical properties--for example, it is a median network and therefore an isometric subgraph of a hypercube. It is commonly used as a tool in studies of DNA sequences gathered from populations. In this paper, we present some results concerning the cut vertices of $\mathcal{B}(\Sigma)$, i.e., vertices whose removal disconnect the graph, as well as its blocks or $2$-connected components--results that yield, in particular, an intriguing generalization of the well-known fact that $\mathcal{B}(\Sigma)$ is a tree if and only if any two splits in $\Sigma$ are compatible.
ISSN:0895-4801
1095-7146
DOI:10.1137/090764360