Finding Cycles with Topological Properties in Embedded Graphs
Let $G$ be a graph cellularly embedded on a surface $\mathcal{S}$. We consider the problem of determining whether $G$ contains a cycle (i.e., a closed walk without repeated vertices) of a certain topological type in $\mathcal{S}$. We show that the problem can be answered in linear time when the topo...
Gespeichert in:
Veröffentlicht in: | SIAM journal on discrete mathematics 2011-01, Vol.25 (4), p.1600-1614 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1614 |
---|---|
container_issue | 4 |
container_start_page | 1600 |
container_title | SIAM journal on discrete mathematics |
container_volume | 25 |
creator | Cabello, Sergio de Verdière, Éric Colin Lazarus, Francis |
description | Let $G$ be a graph cellularly embedded on a surface $\mathcal{S}$. We consider the problem of determining whether $G$ contains a cycle (i.e., a closed walk without repeated vertices) of a certain topological type in $\mathcal{S}$. We show that the problem can be answered in linear time when the topological type is one of the following: contractible, noncontractible, or nonseparating. In each case, we obtain the same time complexity if we require the cycle to contain a given vertex. On the other hand, we prove that the problem is NP-complete when considering separating or splitting cycles. We also show that deciding the existence of a separating or a splitting cycle of length at most $k$ is fixed-parameter tractable with respect to $k$ plus the genus of the surface. |
doi_str_mv | 10.1137/100810794 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_928467228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611423131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5e434060838b0ccbc1248e4ec791f0aaa4d316086ab30fcf079838ad3244fae3</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRMFYP_oPgzUN0JjtJNgcPEtoqFPSQe9hsNu2WNBt3U6T_3pWKp3nwPt4bHmP3CE-IvHhGAIFQlHTBIoQySwqk_JJFIIImAXjNbrzfAyARZhF7WZmxM-M2rk5q0D7-NvMuru1kB7s1Sg7xp7OTdrMJnhnj5aHVXae7eO3ktPO37KqXg9d3f3fB6tWyrt6Szcf6vXrdJCotcU4yTZwgB8FFC0q1ClMSmrQqSuxBSkkdx2DnsuXQqz78H1DZ8ZSol5ov2MM5dnL266j93Ozt0Y2hsSlTQXmRpiJAj2dIOeu9030zOXOQ7tQgNL_bNP_b8B8GzlSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>928467228</pqid></control><display><type>article</type><title>Finding Cycles with Topological Properties in Embedded Graphs</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Cabello, Sergio ; de Verdière, Éric Colin ; Lazarus, Francis</creator><creatorcontrib>Cabello, Sergio ; de Verdière, Éric Colin ; Lazarus, Francis</creatorcontrib><description>Let $G$ be a graph cellularly embedded on a surface $\mathcal{S}$. We consider the problem of determining whether $G$ contains a cycle (i.e., a closed walk without repeated vertices) of a certain topological type in $\mathcal{S}$. We show that the problem can be answered in linear time when the topological type is one of the following: contractible, noncontractible, or nonseparating. In each case, we obtain the same time complexity if we require the cycle to contain a given vertex. On the other hand, we prove that the problem is NP-complete when considering separating or splitting cycles. We also show that deciding the existence of a separating or a splitting cycle of length at most $k$ is fixed-parameter tractable with respect to $k$ plus the genus of the surface.</description><identifier>ISSN: 0895-4801</identifier><identifier>EISSN: 1095-7146</identifier><identifier>DOI: 10.1137/100810794</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Applied mathematics ; Graphs ; Optimization</subject><ispartof>SIAM journal on discrete mathematics, 2011-01, Vol.25 (4), p.1600-1614</ispartof><rights>[Copyright] © 2011 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5e434060838b0ccbc1248e4ec791f0aaa4d316086ab30fcf079838ad3244fae3</citedby><cites>FETCH-LOGICAL-c291t-5e434060838b0ccbc1248e4ec791f0aaa4d316086ab30fcf079838ad3244fae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3185,27924,27925</link.rule.ids></links><search><creatorcontrib>Cabello, Sergio</creatorcontrib><creatorcontrib>de Verdière, Éric Colin</creatorcontrib><creatorcontrib>Lazarus, Francis</creatorcontrib><title>Finding Cycles with Topological Properties in Embedded Graphs</title><title>SIAM journal on discrete mathematics</title><description>Let $G$ be a graph cellularly embedded on a surface $\mathcal{S}$. We consider the problem of determining whether $G$ contains a cycle (i.e., a closed walk without repeated vertices) of a certain topological type in $\mathcal{S}$. We show that the problem can be answered in linear time when the topological type is one of the following: contractible, noncontractible, or nonseparating. In each case, we obtain the same time complexity if we require the cycle to contain a given vertex. On the other hand, we prove that the problem is NP-complete when considering separating or splitting cycles. We also show that deciding the existence of a separating or a splitting cycle of length at most $k$ is fixed-parameter tractable with respect to $k$ plus the genus of the surface.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Graphs</subject><subject>Optimization</subject><issn>0895-4801</issn><issn>1095-7146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kEFLw0AQhRdRMFYP_oPgzUN0JjtJNgcPEtoqFPSQe9hsNu2WNBt3U6T_3pWKp3nwPt4bHmP3CE-IvHhGAIFQlHTBIoQySwqk_JJFIIImAXjNbrzfAyARZhF7WZmxM-M2rk5q0D7-NvMuru1kB7s1Sg7xp7OTdrMJnhnj5aHVXae7eO3ktPO37KqXg9d3f3fB6tWyrt6Szcf6vXrdJCotcU4yTZwgB8FFC0q1ClMSmrQqSuxBSkkdx2DnsuXQqz78H1DZ8ZSol5ov2MM5dnL266j93Ozt0Y2hsSlTQXmRpiJAj2dIOeu9030zOXOQ7tQgNL_bNP_b8B8GzlSg</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Cabello, Sergio</creator><creator>de Verdière, Éric Colin</creator><creator>Lazarus, Francis</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20110101</creationdate><title>Finding Cycles with Topological Properties in Embedded Graphs</title><author>Cabello, Sergio ; de Verdière, Éric Colin ; Lazarus, Francis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5e434060838b0ccbc1248e4ec791f0aaa4d316086ab30fcf079838ad3244fae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Graphs</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabello, Sergio</creatorcontrib><creatorcontrib>de Verdière, Éric Colin</creatorcontrib><creatorcontrib>Lazarus, Francis</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabello, Sergio</au><au>de Verdière, Éric Colin</au><au>Lazarus, Francis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding Cycles with Topological Properties in Embedded Graphs</atitle><jtitle>SIAM journal on discrete mathematics</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>25</volume><issue>4</issue><spage>1600</spage><epage>1614</epage><pages>1600-1614</pages><issn>0895-4801</issn><eissn>1095-7146</eissn><abstract>Let $G$ be a graph cellularly embedded on a surface $\mathcal{S}$. We consider the problem of determining whether $G$ contains a cycle (i.e., a closed walk without repeated vertices) of a certain topological type in $\mathcal{S}$. We show that the problem can be answered in linear time when the topological type is one of the following: contractible, noncontractible, or nonseparating. In each case, we obtain the same time complexity if we require the cycle to contain a given vertex. On the other hand, we prove that the problem is NP-complete when considering separating or splitting cycles. We also show that deciding the existence of a separating or a splitting cycle of length at most $k$ is fixed-parameter tractable with respect to $k$ plus the genus of the surface.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/100810794</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4801 |
ispartof | SIAM journal on discrete mathematics, 2011-01, Vol.25 (4), p.1600-1614 |
issn | 0895-4801 1095-7146 |
language | eng |
recordid | cdi_proquest_journals_928467228 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Algorithms Applied mathematics Graphs Optimization |
title | Finding Cycles with Topological Properties in Embedded Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20Cycles%20with%20Topological%20Properties%20in%20Embedded%20Graphs&rft.jtitle=SIAM%20journal%20on%20discrete%20mathematics&rft.au=Cabello,%20Sergio&rft.date=2011-01-01&rft.volume=25&rft.issue=4&rft.spage=1600&rft.epage=1614&rft.pages=1600-1614&rft.issn=0895-4801&rft.eissn=1095-7146&rft_id=info:doi/10.1137/100810794&rft_dat=%3Cproquest_cross%3E2611423131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=928467228&rft_id=info:pmid/&rfr_iscdi=true |