Finding Cycles with Topological Properties in Embedded Graphs
Let $G$ be a graph cellularly embedded on a surface $\mathcal{S}$. We consider the problem of determining whether $G$ contains a cycle (i.e., a closed walk without repeated vertices) of a certain topological type in $\mathcal{S}$. We show that the problem can be answered in linear time when the topo...
Gespeichert in:
Veröffentlicht in: | SIAM journal on discrete mathematics 2011-01, Vol.25 (4), p.1600-1614 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $G$ be a graph cellularly embedded on a surface $\mathcal{S}$. We consider the problem of determining whether $G$ contains a cycle (i.e., a closed walk without repeated vertices) of a certain topological type in $\mathcal{S}$. We show that the problem can be answered in linear time when the topological type is one of the following: contractible, noncontractible, or nonseparating. In each case, we obtain the same time complexity if we require the cycle to contain a given vertex. On the other hand, we prove that the problem is NP-complete when considering separating or splitting cycles. We also show that deciding the existence of a separating or a splitting cycle of length at most $k$ is fixed-parameter tractable with respect to $k$ plus the genus of the surface. |
---|---|
ISSN: | 0895-4801 1095-7146 |
DOI: | 10.1137/100810794 |