Modeling Trade Direction
I propose a modeling approach to classifying trades as buys or sells. Modeled classifications consider information strengths, microstructure effects, and classification correlations. I also propose estimators for quotes prevailing at trade time. Comparisons using 2800 U.S. stocks show modeled classi...
Gespeichert in:
Veröffentlicht in: | Journal of financial econometrics 2012-04, Vol.10 (2), p.390-415 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | I propose a modeling approach to classifying trades as buys or sells. Modeled classifications consider information strengths, microstructure effects, and classification correlations. I also propose estimators for quotes prevailing at trade time. Comparisons using 2800 U.S. stocks show modeled classifications are 1%-2% more accurate than current methods across dates, sectors, and the spread. For Nasdaq and New York Stock Exchange stocks, 1% and 1.3% of improvement comes from using information strengths; 0.9% and 0.7% of improvement comes from estimating quotes. I find evidence past studies used unclean data and indications of short-term price predictability. The method may help detect destabilizing order flow. |
---|---|
ISSN: | 1479-8409 1479-8417 |
DOI: | 10.1093/jjfinec/nbr014 |