A moving average Cholesky factor model in covariance modelling for longitudinal data

We propose new regression models for parameterizing covariance structures in longitudinal data analysis. Using a novel Cholesky factor, the entries in this decomposition have a moving average and log-innovation interpretation and are modelled as linear functions of covariates. We propose efficient m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2012-03, Vol.99 (1), p.141-150
Hauptverfasser: ZHANG, WEIPING, LENG, CHENLEI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose new regression models for parameterizing covariance structures in longitudinal data analysis. Using a novel Cholesky factor, the entries in this decomposition have a moving average and log-innovation interpretation and are modelled as linear functions of covariates. We propose efficient maximum likelihood estimates for joint mean-covariance analysis based on this decomposition and derive the asymptotic distributions of the coefficient estimates. Furthermore, we study a local search algorithm, computationally more efficient than traditional all subset selection, based on BIC for model selection, and show its model selection consistency. Thus, a conjecture of Pan & MacKenzie (2003) is verified. We demonstrate the finite-sample performance of the method via analysis of data on CD4 trajectories and through simulations.
ISSN:0006-3444
1464-3510
DOI:10.1093/biomet/asr068