A moving average Cholesky factor model in covariance modelling for longitudinal data
We propose new regression models for parameterizing covariance structures in longitudinal data analysis. Using a novel Cholesky factor, the entries in this decomposition have a moving average and log-innovation interpretation and are modelled as linear functions of covariates. We propose efficient m...
Gespeichert in:
Veröffentlicht in: | Biometrika 2012-03, Vol.99 (1), p.141-150 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose new regression models for parameterizing covariance structures in longitudinal data analysis. Using a novel Cholesky factor, the entries in this decomposition have a moving average and log-innovation interpretation and are modelled as linear functions of covariates. We propose efficient maximum likelihood estimates for joint mean-covariance analysis based on this decomposition and derive the asymptotic distributions of the coefficient estimates. Furthermore, we study a local search algorithm, computationally more efficient than traditional all subset selection, based on BIC for model selection, and show its model selection consistency. Thus, a conjecture of Pan & MacKenzie (2003) is verified. We demonstrate the finite-sample performance of the method via analysis of data on CD4 trajectories and through simulations. |
---|---|
ISSN: | 0006-3444 1464-3510 |
DOI: | 10.1093/biomet/asr068 |