Multiscale Representations for Manifold-Valued Data

We describe multiscale representations for data observed on equispaced grids and taking values in manifolds such as the sphere $S^2$, the special orthogonal group $SO(3)$, the positive definite matrices $SPD(n)$, and the Grassmann manifolds $G(n,k)$. The representations are based on the deployment o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multiscale modeling & simulation 2005-01, Vol.4 (4), p.1201-1232
Hauptverfasser: Rahman, Inam Ur, Drori, Iddo, Stodden, Victoria C., Donoho, David L., Schröder, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe multiscale representations for data observed on equispaced grids and taking values in manifolds such as the sphere $S^2$, the special orthogonal group $SO(3)$, the positive definite matrices $SPD(n)$, and the Grassmann manifolds $G(n,k)$. The representations are based on the deployment of Deslauriers--Dubuc and average-interpolating pyramids "in the tangent plane" of such manifolds, using the $Exp$ and $Log$ maps of those manifolds. The representations provide "wavelet coefficients" which can be thresholded, quantized, and scaled in much the same way as traditional wavelet coefficients. Tasks such as compression, noise removal, contrast enhancement, and stochastic simulation are facilitated by this representation. The approach applies to general manifolds but is particularly suited to the manifolds we consider, i.e., Riemannian symmetric spaces, such as $S^{n-1}$, $SO(n)$, $G(n,k)$, where the $Exp$ and $Log$ maps are effectively computable. Applications to manifold-valued data sources of a geometric nature (motion, orientation, diffusion) seem particularly immediate. A software toolbox, SymmLab, can reproduce the results discussed in this paper.
ISSN:1540-3459
1540-3467
DOI:10.1137/050622729