Multiscale Representations for Manifold-Valued Data
We describe multiscale representations for data observed on equispaced grids and taking values in manifolds such as the sphere $S^2$, the special orthogonal group $SO(3)$, the positive definite matrices $SPD(n)$, and the Grassmann manifolds $G(n,k)$. The representations are based on the deployment o...
Gespeichert in:
Veröffentlicht in: | Multiscale modeling & simulation 2005-01, Vol.4 (4), p.1201-1232 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe multiscale representations for data observed on equispaced grids and taking values in manifolds such as the sphere $S^2$, the special orthogonal group $SO(3)$, the positive definite matrices $SPD(n)$, and the Grassmann manifolds $G(n,k)$. The representations are based on the deployment of Deslauriers--Dubuc and average-interpolating pyramids "in the tangent plane" of such manifolds, using the $Exp$ and $Log$ maps of those manifolds. The representations provide "wavelet coefficients" which can be thresholded, quantized, and scaled in much the same way as traditional wavelet coefficients. Tasks such as compression, noise removal, contrast enhancement, and stochastic simulation are facilitated by this representation. The approach applies to general manifolds but is particularly suited to the manifolds we consider, i.e., Riemannian symmetric spaces, such as $S^{n-1}$, $SO(n)$, $G(n,k)$, where the $Exp$ and $Log$ maps are effectively computable. Applications to manifold-valued data sources of a geometric nature (motion, orientation, diffusion) seem particularly immediate. A software toolbox, SymmLab, can reproduce the results discussed in this paper. |
---|---|
ISSN: | 1540-3459 1540-3467 |
DOI: | 10.1137/050622729 |