Functionals of Itô Processes as Stochastic Integrals

Conditions are given under which a functional $L$ of an Ito process $z( \cdot )$, \[(1)\qquad z(t) = z_0 + \int_0^t {f(s,z)ds} + \int_0^t {\sigma (s,z)\, dw} ,\quad 0 \leqq t \leqq 1,\] can be represented as \[L(z( \cdot ,w)) = \int_0^1 {\chi (t,w)dw} (t,w)\quad {\text{w.p. }}1,\] and an explicit fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 1978-03, Vol.16 (2), p.252-269
1. Verfasser: Haussmann, U. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 269
container_issue 2
container_start_page 252
container_title SIAM journal on control and optimization
container_volume 16
creator Haussmann, U. G.
description Conditions are given under which a functional $L$ of an Ito process $z( \cdot )$, \[(1)\qquad z(t) = z_0 + \int_0^t {f(s,z)ds} + \int_0^t {\sigma (s,z)\, dw} ,\quad 0 \leqq t \leqq 1,\] can be represented as \[L(z( \cdot ,w)) = \int_0^1 {\chi (t,w)dw} (t,w)\quad {\text{w.p. }}1,\] and an explicit formula for $\chi $ is given in terms of the Frechet derivative of $L$ and the solution of the linearized version of the Ito equation (1). The method of proof consists of applying a theorem of J. M. C. Clark to the Cauchy-Maruyama approximation of (1).
doi_str_mv 10.1137/0316016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_926037175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2601038451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c248t-b6c4350c9669778c0a36fcb6b2bea62df79bc3b09cf7959d401fb3b4017208103</originalsourceid><addsrcrecordid>eNotkMFKAzEURYMoOFbxFwY3rkbfSzLJZCnFaqGgoK5DkiY6RSc1ySz8L__AH3NKuzp3cbhcLiGXCDeITN4CQwEojkiFoNpGIuuOSQVMsAaQqlNylvMGADlHXpF2MQ6u9HEwn7mOoV6Wv9_6OUXnc_a5Nrl-KdF9mFx6Vy-H4t_TZJ6TkzDBXxw4I2-L-9f5Y7N6eljO71aNo7wrjRWOsxacEkJJ2TkwTARnhaXWG0HXQSrrmAXlptSqNQcMltkJkkKHwGbkat-7TfF79LnoTRzTbqtWVACTKNtJut5LLsWckw96m_ovk340gt5dog-XsH_BjVGq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926037175</pqid></control><display><type>article</type><title>Functionals of Itô Processes as Stochastic Integrals</title><source>SIAM journals (Society for Industrial and Applied Mathematics)</source><creator>Haussmann, U. G.</creator><creatorcontrib>Haussmann, U. G.</creatorcontrib><description>Conditions are given under which a functional $L$ of an Ito process $z( \cdot )$, \[(1)\qquad z(t) = z_0 + \int_0^t {f(s,z)ds} + \int_0^t {\sigma (s,z)\, dw} ,\quad 0 \leqq t \leqq 1,\] can be represented as \[L(z( \cdot ,w)) = \int_0^1 {\chi (t,w)dw} (t,w)\quad {\text{w.p. }}1,\] and an explicit formula for $\chi $ is given in terms of the Frechet derivative of $L$ and the solution of the linearized version of the Ito equation (1). The method of proof consists of applying a theorem of J. M. C. Clark to the Cauchy-Maruyama approximation of (1).</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/0316016</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Hypotheses ; Inequality</subject><ispartof>SIAM journal on control and optimization, 1978-03, Vol.16 (2), p.252-269</ispartof><rights>[Copyright] © 1978 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c248t-b6c4350c9669778c0a36fcb6b2bea62df79bc3b09cf7959d401fb3b4017208103</citedby><cites>FETCH-LOGICAL-c248t-b6c4350c9669778c0a36fcb6b2bea62df79bc3b09cf7959d401fb3b4017208103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27903,27904</link.rule.ids></links><search><creatorcontrib>Haussmann, U. G.</creatorcontrib><title>Functionals of Itô Processes as Stochastic Integrals</title><title>SIAM journal on control and optimization</title><description>Conditions are given under which a functional $L$ of an Ito process $z( \cdot )$, \[(1)\qquad z(t) = z_0 + \int_0^t {f(s,z)ds} + \int_0^t {\sigma (s,z)\, dw} ,\quad 0 \leqq t \leqq 1,\] can be represented as \[L(z( \cdot ,w)) = \int_0^1 {\chi (t,w)dw} (t,w)\quad {\text{w.p. }}1,\] and an explicit formula for $\chi $ is given in terms of the Frechet derivative of $L$ and the solution of the linearized version of the Ito equation (1). The method of proof consists of applying a theorem of J. M. C. Clark to the Cauchy-Maruyama approximation of (1).</description><subject>Approximation</subject><subject>Hypotheses</subject><subject>Inequality</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1978</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkMFKAzEURYMoOFbxFwY3rkbfSzLJZCnFaqGgoK5DkiY6RSc1ySz8L__AH3NKuzp3cbhcLiGXCDeITN4CQwEojkiFoNpGIuuOSQVMsAaQqlNylvMGADlHXpF2MQ6u9HEwn7mOoV6Wv9_6OUXnc_a5Nrl-KdF9mFx6Vy-H4t_TZJ6TkzDBXxw4I2-L-9f5Y7N6eljO71aNo7wrjRWOsxacEkJJ2TkwTARnhaXWG0HXQSrrmAXlptSqNQcMltkJkkKHwGbkat-7TfF79LnoTRzTbqtWVACTKNtJut5LLsWckw96m_ovk340gt5dog-XsH_BjVGq</recordid><startdate>19780301</startdate><enddate>19780301</enddate><creator>Haussmann, U. G.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19780301</creationdate><title>Functionals of Itô Processes as Stochastic Integrals</title><author>Haussmann, U. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c248t-b6c4350c9669778c0a36fcb6b2bea62df79bc3b09cf7959d401fb3b4017208103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1978</creationdate><topic>Approximation</topic><topic>Hypotheses</topic><topic>Inequality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haussmann, U. G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haussmann, U. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functionals of Itô Processes as Stochastic Integrals</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>1978-03-01</date><risdate>1978</risdate><volume>16</volume><issue>2</issue><spage>252</spage><epage>269</epage><pages>252-269</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><abstract>Conditions are given under which a functional $L$ of an Ito process $z( \cdot )$, \[(1)\qquad z(t) = z_0 + \int_0^t {f(s,z)ds} + \int_0^t {\sigma (s,z)\, dw} ,\quad 0 \leqq t \leqq 1,\] can be represented as \[L(z( \cdot ,w)) = \int_0^1 {\chi (t,w)dw} (t,w)\quad {\text{w.p. }}1,\] and an explicit formula for $\chi $ is given in terms of the Frechet derivative of $L$ and the solution of the linearized version of the Ito equation (1). The method of proof consists of applying a theorem of J. M. C. Clark to the Cauchy-Maruyama approximation of (1).</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0316016</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-0129
ispartof SIAM journal on control and optimization, 1978-03, Vol.16 (2), p.252-269
issn 0363-0129
1095-7138
language eng
recordid cdi_proquest_journals_926037175
source SIAM journals (Society for Industrial and Applied Mathematics)
subjects Approximation
Hypotheses
Inequality
title Functionals of Itô Processes as Stochastic Integrals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functionals%20of%20It%C3%B4%20Processes%20as%20Stochastic%20Integrals&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Haussmann,%20U.%20G.&rft.date=1978-03-01&rft.volume=16&rft.issue=2&rft.spage=252&rft.epage=269&rft.pages=252-269&rft.issn=0363-0129&rft.eissn=1095-7138&rft_id=info:doi/10.1137/0316016&rft_dat=%3Cproquest_cross%3E2601038451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926037175&rft_id=info:pmid/&rfr_iscdi=true