Functionals of Itô Processes as Stochastic Integrals
Conditions are given under which a functional $L$ of an Ito process $z( \cdot )$, \[(1)\qquad z(t) = z_0 + \int_0^t {f(s,z)ds} + \int_0^t {\sigma (s,z)\, dw} ,\quad 0 \leqq t \leqq 1,\] can be represented as \[L(z( \cdot ,w)) = \int_0^1 {\chi (t,w)dw} (t,w)\quad {\text{w.p. }}1,\] and an explicit fo...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 1978-03, Vol.16 (2), p.252-269 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conditions are given under which a functional $L$ of an Ito process $z( \cdot )$, \[(1)\qquad z(t) = z_0 + \int_0^t {f(s,z)ds} + \int_0^t {\sigma (s,z)\, dw} ,\quad 0 \leqq t \leqq 1,\] can be represented as \[L(z( \cdot ,w)) = \int_0^1 {\chi (t,w)dw} (t,w)\quad {\text{w.p. }}1,\] and an explicit formula for $\chi $ is given in terms of the Frechet derivative of $L$ and the solution of the linearized version of the Ito equation (1). The method of proof consists of applying a theorem of J. M. C. Clark to the Cauchy-Maruyama approximation of (1). |
---|---|
ISSN: | 0363-0129 1095-7138 |
DOI: | 10.1137/0316016 |