Controllability for Distributed Bilinear Systems
This paper studies controllability of systems of the form ${{dw} / {dt}} = \mathcal {A}w + p(t)\mathcal {B}w$ where $\mathcal{A}$ is the infinitesimal generator of a $C^0$ semigroup of bounded linear operators $e^{\mathcal{A}t} $ on a Banach space $X$, $\mathcal{B}:X \to X$ is a $C^1$ map, and $p \i...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 1982-07, Vol.20 (4), p.575-597 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies controllability of systems of the form ${{dw} / {dt}} = \mathcal {A}w + p(t)\mathcal {B}w$ where $\mathcal{A}$ is the infinitesimal generator of a $C^0$ semigroup of bounded linear operators $e^{\mathcal{A}t} $ on a Banach space $X$, $\mathcal{B}:X \to X$ is a $C^1$ map, and $p \in L^1 ([0,T];\mathbb{R})$ is a control. The paper (i) gives conditions for elements of $X$ to be accessible from a given initial state $w_0$ and (ii) shows that controllability to a full neighborhood in $X$ of $w_0$ is impossible for $\dim X = \infty $. Examples of hyperbolic partial differential equations are provided. |
---|---|
ISSN: | 0363-0129 1095-7138 |
DOI: | 10.1137/0320042 |