Controllability for Distributed Bilinear Systems

This paper studies controllability of systems of the form ${{dw} / {dt}} = \mathcal {A}w + p(t)\mathcal {B}w$ where $\mathcal{A}$ is the infinitesimal generator of a $C^0$ semigroup of bounded linear operators $e^{\mathcal{A}t} $ on a Banach space $X$, $\mathcal{B}:X \to X$ is a $C^1$ map, and $p \i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 1982-07, Vol.20 (4), p.575-597
Hauptverfasser: Ball, J. M., Marsden, J. E., Slemrod, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies controllability of systems of the form ${{dw} / {dt}} = \mathcal {A}w + p(t)\mathcal {B}w$ where $\mathcal{A}$ is the infinitesimal generator of a $C^0$ semigroup of bounded linear operators $e^{\mathcal{A}t} $ on a Banach space $X$, $\mathcal{B}:X \to X$ is a $C^1$ map, and $p \in L^1 ([0,T];\mathbb{R})$ is a control. The paper (i) gives conditions for elements of $X$ to be accessible from a given initial state $w_0$ and (ii) shows that controllability to a full neighborhood in $X$ of $w_0$ is impossible for $\dim X = \infty $. Examples of hyperbolic partial differential equations are provided.
ISSN:0363-0129
1095-7138
DOI:10.1137/0320042