Constrained controllability of linear discrete nonstationary systems in Banach spaces
This paper studies local null-controllability of linear infinite-dimensional, nonstationary, discrete-time systems of the form $x_{k + 1} = A_k x_k + B_k u_k $, $u_k \in \Omega \subset U$, $x_k \in M_k \subset X$, where $X$, $U$ are Banach spaces; $A_k $, $B_k $ are linear bounded operators; $M_k $,...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 1992-11, Vol.30 (6), p.1311-1318 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1318 |
---|---|
container_issue | 6 |
container_start_page | 1311 |
container_title | SIAM journal on control and optimization |
container_volume | 30 |
creator | Phat, Vu Ngoc Dieu, Trinh Cong |
description | This paper studies local null-controllability of linear infinite-dimensional, nonstationary, discrete-time systems of the form $x_{k + 1} = A_k x_k + B_k u_k $, $u_k \in \Omega \subset U$, $x_k \in M_k \subset X$, where $X$, $U$ are Banach spaces; $A_k $, $B_k $ are linear bounded operators; $M_k $, $\Omega $ are given nonempty subsets. New necessary and sufficient conditions for local null-controllability are given. The main tool is the surjectivity theorem for convex multivalued mappings in Banach spaces. |
doi_str_mv | 10.1137/0330069 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925907560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600713321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-7a8d148a8f1084ad103cf52da1bf2c7b5d29023838f7a314c3ecb72d404bb8903</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKv4F4IIrkZvHjNJllp8QcGNXQ93MgmmTDM1SRf9905pcXUW9-O7h0PILYNHxoR6AiEAGnNGZgxMXSkm9DmZgWhEBYybS3KV8xqAScnkjKwWY8wlYYiup3aMJY3DgF0YQtnT0dNhOmCifcg2ueJoPOBYwhgx7Wne5-I2mYZIXzCi_aF5i9bla3Lhccju5pRzsnp7_V58VMuv98_F87KyXJlSKdQ9kxq1Z6Al9gyE9TXvkXWeW9XVPTfAhRbaKxRMWuFsp3gvQXadNiDm5O7o3abxd-dyadfjLsXpZWt4bUDVzQF6OEI2jTkn59ttCpupfsugPUzWniabyPuTDrPFwSeMNuR_XIrJxhrxB54farY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925907560</pqid></control><display><type>article</type><title>Constrained controllability of linear discrete nonstationary systems in Banach spaces</title><source>SIAM Journals Online</source><creator>Phat, Vu Ngoc ; Dieu, Trinh Cong</creator><creatorcontrib>Phat, Vu Ngoc ; Dieu, Trinh Cong</creatorcontrib><description>This paper studies local null-controllability of linear infinite-dimensional, nonstationary, discrete-time systems of the form $x_{k + 1} = A_k x_k + B_k u_k $, $u_k \in \Omega \subset U$, $x_k \in M_k \subset X$, where $X$, $U$ are Banach spaces; $A_k $, $B_k $ are linear bounded operators; $M_k $, $\Omega $ are given nonempty subsets. New necessary and sufficient conditions for local null-controllability are given. The main tool is the surjectivity theorem for convex multivalued mappings in Banach spaces.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/0330069</identifier><identifier>CODEN: SJCODC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied sciences ; Banach spaces ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; System theory</subject><ispartof>SIAM journal on control and optimization, 1992-11, Vol.30 (6), p.1311-1318</ispartof><rights>1993 INIST-CNRS</rights><rights>[Copyright] © 1992 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-7a8d148a8f1084ad103cf52da1bf2c7b5d29023838f7a314c3ecb72d404bb8903</citedby><cites>FETCH-LOGICAL-c279t-7a8d148a8f1084ad103cf52da1bf2c7b5d29023838f7a314c3ecb72d404bb8903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3182,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4360316$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Phat, Vu Ngoc</creatorcontrib><creatorcontrib>Dieu, Trinh Cong</creatorcontrib><title>Constrained controllability of linear discrete nonstationary systems in Banach spaces</title><title>SIAM journal on control and optimization</title><description>This paper studies local null-controllability of linear infinite-dimensional, nonstationary, discrete-time systems of the form $x_{k + 1} = A_k x_k + B_k u_k $, $u_k \in \Omega \subset U$, $x_k \in M_k \subset X$, where $X$, $U$ are Banach spaces; $A_k $, $B_k $ are linear bounded operators; $M_k $, $\Omega $ are given nonempty subsets. New necessary and sufficient conditions for local null-controllability are given. The main tool is the surjectivity theorem for convex multivalued mappings in Banach spaces.</description><subject>Applied sciences</subject><subject>Banach spaces</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>System theory</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kEtLAzEUhYMoWKv4F4IIrkZvHjNJllp8QcGNXQ93MgmmTDM1SRf9905pcXUW9-O7h0PILYNHxoR6AiEAGnNGZgxMXSkm9DmZgWhEBYybS3KV8xqAScnkjKwWY8wlYYiup3aMJY3DgF0YQtnT0dNhOmCifcg2ueJoPOBYwhgx7Wne5-I2mYZIXzCi_aF5i9bla3Lhccju5pRzsnp7_V58VMuv98_F87KyXJlSKdQ9kxq1Z6Al9gyE9TXvkXWeW9XVPTfAhRbaKxRMWuFsp3gvQXadNiDm5O7o3abxd-dyadfjLsXpZWt4bUDVzQF6OEI2jTkn59ttCpupfsugPUzWniabyPuTDrPFwSeMNuR_XIrJxhrxB54farY</recordid><startdate>19921101</startdate><enddate>19921101</enddate><creator>Phat, Vu Ngoc</creator><creator>Dieu, Trinh Cong</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19921101</creationdate><title>Constrained controllability of linear discrete nonstationary systems in Banach spaces</title><author>Phat, Vu Ngoc ; Dieu, Trinh Cong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-7a8d148a8f1084ad103cf52da1bf2c7b5d29023838f7a314c3ecb72d404bb8903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Applied sciences</topic><topic>Banach spaces</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phat, Vu Ngoc</creatorcontrib><creatorcontrib>Dieu, Trinh Cong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phat, Vu Ngoc</au><au>Dieu, Trinh Cong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constrained controllability of linear discrete nonstationary systems in Banach spaces</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>1992-11-01</date><risdate>1992</risdate><volume>30</volume><issue>6</issue><spage>1311</spage><epage>1318</epage><pages>1311-1318</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><coden>SJCODC</coden><abstract>This paper studies local null-controllability of linear infinite-dimensional, nonstationary, discrete-time systems of the form $x_{k + 1} = A_k x_k + B_k u_k $, $u_k \in \Omega \subset U$, $x_k \in M_k \subset X$, where $X$, $U$ are Banach spaces; $A_k $, $B_k $ are linear bounded operators; $M_k $, $\Omega $ are given nonempty subsets. New necessary and sufficient conditions for local null-controllability are given. The main tool is the surjectivity theorem for convex multivalued mappings in Banach spaces.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0330069</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-0129 |
ispartof | SIAM journal on control and optimization, 1992-11, Vol.30 (6), p.1311-1318 |
issn | 0363-0129 1095-7138 |
language | eng |
recordid | cdi_proquest_journals_925907560 |
source | SIAM Journals Online |
subjects | Applied sciences Banach spaces Computer science control theory systems Control theory. Systems Exact sciences and technology System theory |
title | Constrained controllability of linear discrete nonstationary systems in Banach spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constrained%20controllability%20of%20linear%20discrete%20nonstationary%20systems%20in%20Banach%20spaces&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Phat,%20Vu%20Ngoc&rft.date=1992-11-01&rft.volume=30&rft.issue=6&rft.spage=1311&rft.epage=1318&rft.pages=1311-1318&rft.issn=0363-0129&rft.eissn=1095-7138&rft.coden=SJCODC&rft_id=info:doi/10.1137/0330069&rft_dat=%3Cproquest_cross%3E2600713321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925907560&rft_id=info:pmid/&rfr_iscdi=true |