Constrained controllability of linear discrete nonstationary systems in Banach spaces

This paper studies local null-controllability of linear infinite-dimensional, nonstationary, discrete-time systems of the form $x_{k + 1} = A_k x_k + B_k u_k $, $u_k \in \Omega \subset U$, $x_k \in M_k \subset X$, where $X$, $U$ are Banach spaces; $A_k $, $B_k $ are linear bounded operators; $M_k $,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 1992-11, Vol.30 (6), p.1311-1318
Hauptverfasser: Phat, Vu Ngoc, Dieu, Trinh Cong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1318
container_issue 6
container_start_page 1311
container_title SIAM journal on control and optimization
container_volume 30
creator Phat, Vu Ngoc
Dieu, Trinh Cong
description This paper studies local null-controllability of linear infinite-dimensional, nonstationary, discrete-time systems of the form $x_{k + 1} = A_k x_k + B_k u_k $, $u_k \in \Omega \subset U$, $x_k \in M_k \subset X$, where $X$, $U$ are Banach spaces; $A_k $, $B_k $ are linear bounded operators; $M_k $, $\Omega $ are given nonempty subsets. New necessary and sufficient conditions for local null-controllability are given. The main tool is the surjectivity theorem for convex multivalued mappings in Banach spaces.
doi_str_mv 10.1137/0330069
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925907560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600713321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-7a8d148a8f1084ad103cf52da1bf2c7b5d29023838f7a314c3ecb72d404bb8903</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKv4F4IIrkZvHjNJllp8QcGNXQ93MgmmTDM1SRf9905pcXUW9-O7h0PILYNHxoR6AiEAGnNGZgxMXSkm9DmZgWhEBYybS3KV8xqAScnkjKwWY8wlYYiup3aMJY3DgF0YQtnT0dNhOmCifcg2ueJoPOBYwhgx7Wne5-I2mYZIXzCi_aF5i9bla3Lhccju5pRzsnp7_V58VMuv98_F87KyXJlSKdQ9kxq1Z6Al9gyE9TXvkXWeW9XVPTfAhRbaKxRMWuFsp3gvQXadNiDm5O7o3abxd-dyadfjLsXpZWt4bUDVzQF6OEI2jTkn59ttCpupfsugPUzWniabyPuTDrPFwSeMNuR_XIrJxhrxB54farY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925907560</pqid></control><display><type>article</type><title>Constrained controllability of linear discrete nonstationary systems in Banach spaces</title><source>SIAM Journals Online</source><creator>Phat, Vu Ngoc ; Dieu, Trinh Cong</creator><creatorcontrib>Phat, Vu Ngoc ; Dieu, Trinh Cong</creatorcontrib><description>This paper studies local null-controllability of linear infinite-dimensional, nonstationary, discrete-time systems of the form $x_{k + 1} = A_k x_k + B_k u_k $, $u_k \in \Omega \subset U$, $x_k \in M_k \subset X$, where $X$, $U$ are Banach spaces; $A_k $, $B_k $ are linear bounded operators; $M_k $, $\Omega $ are given nonempty subsets. New necessary and sufficient conditions for local null-controllability are given. The main tool is the surjectivity theorem for convex multivalued mappings in Banach spaces.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/0330069</identifier><identifier>CODEN: SJCODC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied sciences ; Banach spaces ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; System theory</subject><ispartof>SIAM journal on control and optimization, 1992-11, Vol.30 (6), p.1311-1318</ispartof><rights>1993 INIST-CNRS</rights><rights>[Copyright] © 1992 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-7a8d148a8f1084ad103cf52da1bf2c7b5d29023838f7a314c3ecb72d404bb8903</citedby><cites>FETCH-LOGICAL-c279t-7a8d148a8f1084ad103cf52da1bf2c7b5d29023838f7a314c3ecb72d404bb8903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3182,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4360316$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Phat, Vu Ngoc</creatorcontrib><creatorcontrib>Dieu, Trinh Cong</creatorcontrib><title>Constrained controllability of linear discrete nonstationary systems in Banach spaces</title><title>SIAM journal on control and optimization</title><description>This paper studies local null-controllability of linear infinite-dimensional, nonstationary, discrete-time systems of the form $x_{k + 1} = A_k x_k + B_k u_k $, $u_k \in \Omega \subset U$, $x_k \in M_k \subset X$, where $X$, $U$ are Banach spaces; $A_k $, $B_k $ are linear bounded operators; $M_k $, $\Omega $ are given nonempty subsets. New necessary and sufficient conditions for local null-controllability are given. The main tool is the surjectivity theorem for convex multivalued mappings in Banach spaces.</description><subject>Applied sciences</subject><subject>Banach spaces</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>System theory</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kEtLAzEUhYMoWKv4F4IIrkZvHjNJllp8QcGNXQ93MgmmTDM1SRf9905pcXUW9-O7h0PILYNHxoR6AiEAGnNGZgxMXSkm9DmZgWhEBYybS3KV8xqAScnkjKwWY8wlYYiup3aMJY3DgF0YQtnT0dNhOmCifcg2ueJoPOBYwhgx7Wne5-I2mYZIXzCi_aF5i9bla3Lhccju5pRzsnp7_V58VMuv98_F87KyXJlSKdQ9kxq1Z6Al9gyE9TXvkXWeW9XVPTfAhRbaKxRMWuFsp3gvQXadNiDm5O7o3abxd-dyadfjLsXpZWt4bUDVzQF6OEI2jTkn59ttCpupfsugPUzWniabyPuTDrPFwSeMNuR_XIrJxhrxB54farY</recordid><startdate>19921101</startdate><enddate>19921101</enddate><creator>Phat, Vu Ngoc</creator><creator>Dieu, Trinh Cong</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19921101</creationdate><title>Constrained controllability of linear discrete nonstationary systems in Banach spaces</title><author>Phat, Vu Ngoc ; Dieu, Trinh Cong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-7a8d148a8f1084ad103cf52da1bf2c7b5d29023838f7a314c3ecb72d404bb8903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Applied sciences</topic><topic>Banach spaces</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phat, Vu Ngoc</creatorcontrib><creatorcontrib>Dieu, Trinh Cong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phat, Vu Ngoc</au><au>Dieu, Trinh Cong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constrained controllability of linear discrete nonstationary systems in Banach spaces</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>1992-11-01</date><risdate>1992</risdate><volume>30</volume><issue>6</issue><spage>1311</spage><epage>1318</epage><pages>1311-1318</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><coden>SJCODC</coden><abstract>This paper studies local null-controllability of linear infinite-dimensional, nonstationary, discrete-time systems of the form $x_{k + 1} = A_k x_k + B_k u_k $, $u_k \in \Omega \subset U$, $x_k \in M_k \subset X$, where $X$, $U$ are Banach spaces; $A_k $, $B_k $ are linear bounded operators; $M_k $, $\Omega $ are given nonempty subsets. New necessary and sufficient conditions for local null-controllability are given. The main tool is the surjectivity theorem for convex multivalued mappings in Banach spaces.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0330069</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-0129
ispartof SIAM journal on control and optimization, 1992-11, Vol.30 (6), p.1311-1318
issn 0363-0129
1095-7138
language eng
recordid cdi_proquest_journals_925907560
source SIAM Journals Online
subjects Applied sciences
Banach spaces
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
System theory
title Constrained controllability of linear discrete nonstationary systems in Banach spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constrained%20controllability%20of%20linear%20discrete%20nonstationary%20systems%20in%20Banach%20spaces&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Phat,%20Vu%20Ngoc&rft.date=1992-11-01&rft.volume=30&rft.issue=6&rft.spage=1311&rft.epage=1318&rft.pages=1311-1318&rft.issn=0363-0129&rft.eissn=1095-7138&rft.coden=SJCODC&rft_id=info:doi/10.1137/0330069&rft_dat=%3Cproquest_cross%3E2600713321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925907560&rft_id=info:pmid/&rfr_iscdi=true