Constrained controllability of linear discrete nonstationary systems in Banach spaces
This paper studies local null-controllability of linear infinite-dimensional, nonstationary, discrete-time systems of the form $x_{k + 1} = A_k x_k + B_k u_k $, $u_k \in \Omega \subset U$, $x_k \in M_k \subset X$, where $X$, $U$ are Banach spaces; $A_k $, $B_k $ are linear bounded operators; $M_k $,...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 1992-11, Vol.30 (6), p.1311-1318 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies local null-controllability of linear infinite-dimensional, nonstationary, discrete-time systems of the form $x_{k + 1} = A_k x_k + B_k u_k $, $u_k \in \Omega \subset U$, $x_k \in M_k \subset X$, where $X$, $U$ are Banach spaces; $A_k $, $B_k $ are linear bounded operators; $M_k $, $\Omega $ are given nonempty subsets. New necessary and sufficient conditions for local null-controllability are given. The main tool is the surjectivity theorem for convex multivalued mappings in Banach spaces. |
---|---|
ISSN: | 0363-0129 1095-7138 |
DOI: | 10.1137/0330069 |