Persistency of excitation in identification using radial basis function approximants

In this paper, identification algorithms whose convergence and rate of convergence hinge on the regressor vector being persistently exciting are discussed. It is then shown that if the regressor vector is constructed out of radial basis function approximants, it will be persistently exciting, provid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 1995-03, Vol.33 (2), p.625-642
Hauptverfasser: KURDILA, A. J, NARCOWICH, F. J, WARD, J. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, identification algorithms whose convergence and rate of convergence hinge on the regressor vector being persistently exciting are discussed. It is then shown that if the regressor vector is constructed out of radial basis function approximants, it will be persistently exciting, provided a kind of "ergodic" condition is satisfied. In addition, bounds on parameters associated with the persistently exciting regressor vector are provided; these parameters are connected with both the convergence and rates of convergence of the algorithms involved.
ISSN:0363-0129
1095-7138
DOI:10.1137/S0363012992232555