Perturbed optimization in Banach spaces. I: General theory based on a weak directional constraint qualification
Using a directional form of constraint qualification weaker than Robinson's, we derive an implicit function theorem for inclusions and use it for first- and second-order sensitivity analyses of the value function in perturbed constrained optimization. We obtain Holder and Lipschitz properties a...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 1996-07, Vol.34 (4), p.1151-1171 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using a directional form of constraint qualification weaker than Robinson's, we derive an implicit function theorem for inclusions and use it for first- and second-order sensitivity analyses of the value function in perturbed constrained optimization. We obtain Holder and Lipschitz properties and, under a no-gap condition, first-order expansions for exact and approximate solutions. As an application, differentiability properties of metric projections in Hilbert spaces are obtained, using a condition generalizing polyhedricity. We also present in the appendix a short proof of a generalization of the convex duality theorem in Banach spaces. |
---|---|
ISSN: | 0363-0129 1095-7138 |
DOI: | 10.1137/S0363012994267273 |