Nonlinear Adaptive Tracking Using Kernel Estimators: Estimation and Test for Linearity

We present some statistical results on nonlinear adaptive control using kernel estimators. We are concerned with a nonlinear autoregressive model of the form $$ X_{n+1} = f(X_n) + U_n + \xi_{n+1}, \hskip 0.4cm n \in \mathbb{N}, $$ controlled using a nonparametric estimator of the unknown function f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 2000, Vol.39 (3), p.707-727
Hauptverfasser: Poggi, Jean-Michel, Portier, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present some statistical results on nonlinear adaptive control using kernel estimators. We are concerned with a nonlinear autoregressive model of the form $$ X_{n+1} = f(X_n) + U_n + \xi_{n+1}, \hskip 0.4cm n \in \mathbb{N}, $$ controlled using a nonparametric estimator of the unknown function f and derived from a tracking control policy. We prove an almost sure convergence result for the noise density estimator, a pointwise central limit theorem for f, and a test for linearity of the driving function f.
ISSN:0363-0129
1095-7138
DOI:10.1137/S0363012998349613