Linear Control Systems on Unbounded Time Intervals and Invariant Measures of Ornstein--Uhlenbeck Processes in Hilbert Spaces
We consider linear control systems in a Hilbert space over an unbounded time interval of the form $$ y_\alpha'(t)=(A-\alpha I)y_\alpha(t)+Bu(t), \qquad t\in (-\infty, T], $$ with bounded control operator B, under appropriate stability assumptions on the operator A. We study how the space of sta...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 2003-01, Vol.42 (5), p.1776-1794 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider linear control systems in a Hilbert space over an unbounded time interval of the form $$ y_\alpha'(t)=(A-\alpha I)y_\alpha(t)+Bu(t), \qquad t\in (-\infty, T], $$ with bounded control operator B, under appropriate stability assumptions on the operator A. We study how the space of states reachable at time T depends on the parameter $\alpha\geq 0$. We apply the results to study the dependence on $\alpha$ of the Cameron--Martin spaces of the invariant measures of the Ornstein--Uhlenbeck processes $X_\alpha$ defined by the equation driven by the Wiener process W: $$ dX_\alpha(t) = (A-\alpha I) X_\alpha(t)\; dt + B\; dW(t),\qquad t\geq 0. |
---|---|
ISSN: | 0363-0129 1095-7138 |
DOI: | 10.1137/S0363012902414652 |