Learning complexity dimensions for a continuous-time control system

This paper takes a computational learning theory approach to a problem of linear systems identification. It is assumed that inputs are generated randomly from a known class consisting of linear combinations of k sinusoidals. The output of the system is classified at some single instant of time. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 2004-01, Vol.43 (3), p.872-898
Hauptverfasser: KUUSELA, Pirkko, OCONE, Daniel, SONTAG, Eduardo D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper takes a computational learning theory approach to a problem of linear systems identification. It is assumed that inputs are generated randomly from a known class consisting of linear combinations of k sinusoidals. The output of the system is classified at some single instant of time. The main result establishes that the number of samples needed for identification with small error and high probability, independently from the distribution of inputs, scales polynomially with n, the system dimension, and logarithmically with k.
ISSN:0363-0129
1095-7138
DOI:10.1137/S0363012901384302