Constrained Dirichlet Boundary Control in $L^2$ for a Class of Evolution Equations

Optimal Dirichlet boundary control based on the very weak solution of a parabolic state equation is analyzed. This approach allows us to consider the boundary controls in $L^2$, which has advantages over approaches which consider control in Sobolev spaces involving (fractional) derivatives. Pointwis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 2007-01, Vol.46 (5), p.1726-1753
Hauptverfasser: Kunisch, K., Vexler, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optimal Dirichlet boundary control based on the very weak solution of a parabolic state equation is analyzed. This approach allows us to consider the boundary controls in $L^2$, which has advantages over approaches which consider control in Sobolev spaces involving (fractional) derivatives. Pointwise constraints on the boundary are incorporated by the primal-dual active set strategy. Its global and local superlinear convergences are shown. A discretization based on space-time finite elements is proposed and numerical examples are included.
ISSN:0363-0129
1095-7138
DOI:10.1137/060670110