Local Controllability of a One-Dimensional Beam Equation
We prove that the beam equation with clamped ends is locally controllable in a $H^{5+\epsilon} \times H^{3+\epsilon} ((0,1),\mathbb{R})$-neighborhood of a particular trajectory of the free system, with $\epsilon>0$ and with control functions in $H^{1}_{0}((0,T),\mathbb{R})$. Ball,. Marsden, and S...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 2008-01, Vol.47 (3), p.1219-1273 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the beam equation with clamped ends is locally controllable in a $H^{5+\epsilon} \times H^{3+\epsilon} ((0,1),\mathbb{R})$-neighborhood of a particular trajectory of the free system, with $\epsilon>0$ and with control functions in $H^{1}_{0}((0,T),\mathbb{R})$. Ball,. Marsden, and Slemrod already proved that this equation is not controllable in $H^{2}_{0} \times L^{2}((0,1),\mathbb{R})$ with control functions in $L^{r}_{\text{loc}}(\mathbb{R},\mathbb{R})$, $r>1$. This article justifies that their negative result is due to a choice of functional spaces which does not allow controllability. Our proof uses moment theory and the Nash-Moser theorem. |
---|---|
ISSN: | 0363-0129 1095-7138 |
DOI: | 10.1137/050642034 |