Local Controllability of a One-Dimensional Beam Equation

We prove that the beam equation with clamped ends is locally controllable in a $H^{5+\epsilon} \times H^{3+\epsilon} ((0,1),\mathbb{R})$-neighborhood of a particular trajectory of the free system, with $\epsilon>0$ and with control functions in $H^{1}_{0}((0,T),\mathbb{R})$. Ball,. Marsden, and S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 2008-01, Vol.47 (3), p.1219-1273
1. Verfasser: Beauchard, Karine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the beam equation with clamped ends is locally controllable in a $H^{5+\epsilon} \times H^{3+\epsilon} ((0,1),\mathbb{R})$-neighborhood of a particular trajectory of the free system, with $\epsilon>0$ and with control functions in $H^{1}_{0}((0,T),\mathbb{R})$. Ball,. Marsden, and Slemrod already proved that this equation is not controllable in $H^{2}_{0} \times L^{2}((0,1),\mathbb{R})$ with control functions in $L^{r}_{\text{loc}}(\mathbb{R},\mathbb{R})$, $r>1$. This article justifies that their negative result is due to a choice of functional spaces which does not allow controllability. Our proof uses moment theory and the Nash-Moser theorem.
ISSN:0363-0129
1095-7138
DOI:10.1137/050642034