Two New Bounds for the Random‐Edge Simplex‐Algorithm
We prove that the RANDOM-EDGE simplex-algorithm requires an expected number of at most $13n/\sqrt{d}$ pivot steps on any simple $d$-polytope with $n$ vertices. This is the first nontrivial upper bound for general polytopes. We also describe a refined analysis that potentially yields much better boun...
Gespeichert in:
Veröffentlicht in: | SIAM journal on discrete mathematics 2007-01, Vol.21 (1), p.178-190 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the RANDOM-EDGE simplex-algorithm requires an expected number of at most $13n/\sqrt{d}$ pivot steps on any simple $d$-polytope with $n$ vertices. This is the first nontrivial upper bound for general polytopes. We also describe a refined analysis that potentially yields much better bounds for specific classes of polytopes. As one application, we show that for combinatorial $d$-cubes the trivial upper bound of $2^d$ on the performance of RANDOM-EDGE can asymptotically be improved by the factor $1/d^{(1-\varepsilon)\log d}$ for every $\varepsilon>0$. |
---|---|
ISSN: | 0895-4801 1095-7146 |
DOI: | 10.1137/05062370X |