Two New Bounds for the Random‐Edge Simplex‐Algorithm

We prove that the RANDOM-EDGE simplex-algorithm requires an expected number of at most $13n/\sqrt{d}$ pivot steps on any simple $d$-polytope with $n$ vertices. This is the first nontrivial upper bound for general polytopes. We also describe a refined analysis that potentially yields much better boun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on discrete mathematics 2007-01, Vol.21 (1), p.178-190
Hauptverfasser: Gärtner, Bernd, Kaibel, Volker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the RANDOM-EDGE simplex-algorithm requires an expected number of at most $13n/\sqrt{d}$ pivot steps on any simple $d$-polytope with $n$ vertices. This is the first nontrivial upper bound for general polytopes. We also describe a refined analysis that potentially yields much better bounds for specific classes of polytopes. As one application, we show that for combinatorial $d$-cubes the trivial upper bound of $2^d$ on the performance of RANDOM-EDGE can asymptotically be improved by the factor $1/d^{(1-\varepsilon)\log d}$ for every $\varepsilon>0$.
ISSN:0895-4801
1095-7146
DOI:10.1137/05062370X