Wave steepness retrieved from scatterometer data in a genetic algorithm
Wave steepness is an important characteristic of a high sea state, and is widely applied on wave propagations at ports, ships, offshore platforms, and CO2 circulation in the ocean. Obtaining wave steepness is a difficult task that depends heavily on theoretical research on wavelength distribution an...
Gespeichert in:
Veröffentlicht in: | Chinese journal of oceanology and limnology 2012-03, Vol.30 (2), p.336-341 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wave steepness is an important characteristic of a high sea state, and is widely applied on wave propagations at ports, ships, offshore platforms, and CO2 circulation in the ocean. Obtaining wave steepness is a difficult task that depends heavily on theoretical research on wavelength distribution and direct observations. Development of remote-sensing techniques provides new opportunities to study wave steepness. At present, two formulas are proposed to estimate wave steepness from QuikSCAT and ERS-1/2 scatterometer data. We found that wave steepness retrieving is not affected by radar band, and polarization method, and that relationship of wave steepness with radar backscattering cross section is similar to that with wind. Therefore, we adopted and modified a genetic algorithm for relating wave steepness with radar backscattering cross section. Results show that the root-mean-square error of the wave steepness retrieved is 0.005 in two cases from ERS-1/2 scatterometer data and from QuikSCAT scatterometer data. |
---|---|
ISSN: | 0254-4059 2096-5508 1993-5005 2523-3521 |
DOI: | 10.1007/s00343-012-1127-6 |