Blocking semiovals of type (1, M + 1, N + 1)
We consider the existence of blocking semiovals in finite projective planes which have intersection sizes 1, m+1 or n+1 with the lines of the plane for $1 \leq m < n$. For those prime powers $q \leq 1024$, in almost all cases, we are able to show that, apart from a trivial example, no such blocki...
Gespeichert in:
Veröffentlicht in: | SIAM journal on discrete mathematics 2001-01, Vol.14 (4), p.446-457 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the existence of blocking semiovals in finite projective planes which have intersection sizes 1, m+1 or n+1 with the lines of the plane for $1 \leq m < n$. For those prime powers $q \leq 1024$, in almost all cases, we are able to show that, apart from a trivial example, no such blocking semioval exists in a projective plane of order q. We are also able to prove, for general q, that if q2+q+1 is a prime or three times a prime, then only the same trivial example can exist in a projective plane of order q. |
---|---|
ISSN: | 0895-4801 1095-7146 |
DOI: | 10.1137/S0895480100338002 |