Blocking semiovals of type (1, M + 1, N + 1)

We consider the existence of blocking semiovals in finite projective planes which have intersection sizes 1, m+1 or n+1 with the lines of the plane for $1 \leq m < n$. For those prime powers $q \leq 1024$, in almost all cases, we are able to show that, apart from a trivial example, no such blocki...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on discrete mathematics 2001-01, Vol.14 (4), p.446-457
Hauptverfasser: BATTEN, Lynn M, DOVER, Jeremy M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the existence of blocking semiovals in finite projective planes which have intersection sizes 1, m+1 or n+1 with the lines of the plane for $1 \leq m < n$. For those prime powers $q \leq 1024$, in almost all cases, we are able to show that, apart from a trivial example, no such blocking semioval exists in a projective plane of order q. We are also able to prove, for general q, that if q2+q+1 is a prime or three times a prime, then only the same trivial example can exist in a projective plane of order q.
ISSN:0895-4801
1095-7146
DOI:10.1137/S0895480100338002