Precoloring Extensions of Brooks' Theorem

Let G be a connected graph with maximum degree k (other than a complete graph or odd cycle), let W be a precolored set of vertices in G inducing a subgraph F, and let D be the minimum distance in G between components of F. If the components of F are complete graphs and $D\ge 8$ (for $k\ge 4$) or $D\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on discrete mathematics 2004, Vol.18 (3), p.542-553
Hauptverfasser: Albertson, Michael O., Kostochka, Alexandr V., West, Douglas B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a connected graph with maximum degree k (other than a complete graph or odd cycle), let W be a precolored set of vertices in G inducing a subgraph F, and let D be the minimum distance in G between components of F. If the components of F are complete graphs and $D\ge 8$ (for $k\ge 4$) or $D\ge 10$ (for k = 3), then every proper k-coloring of F extends to a proper k-coloring of G. If the components of F are single vertices and $Dge 8$, and the vertices outside W are assigned color lists of size k, then every k-coloring of F extends to a proper coloring of G with the color on each vertex chosen from its list. These results are sharp.
ISSN:0895-4801
1095-7146
DOI:10.1137/S0895480103425942