Precoloring Extensions of Brooks' Theorem
Let G be a connected graph with maximum degree k (other than a complete graph or odd cycle), let W be a precolored set of vertices in G inducing a subgraph F, and let D be the minimum distance in G between components of F. If the components of F are complete graphs and $D\ge 8$ (for $k\ge 4$) or $D\...
Gespeichert in:
Veröffentlicht in: | SIAM journal on discrete mathematics 2004, Vol.18 (3), p.542-553 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a connected graph with maximum degree k (other than a complete graph or odd cycle), let W be a precolored set of vertices in G inducing a subgraph F, and let D be the minimum distance in G between components of F. If the components of F are complete graphs and $D\ge 8$ (for $k\ge 4$) or $D\ge 10$ (for k = 3), then every proper k-coloring of F extends to a proper k-coloring of G. If the components of F are single vertices and $Dge 8$, and the vertices outside W are assigned color lists of size k, then every k-coloring of F extends to a proper coloring of G with the color on each vertex chosen from its list. These results are sharp. |
---|---|
ISSN: | 0895-4801 1095-7146 |
DOI: | 10.1137/S0895480103425942 |