The Joints Problem in $\mathbb{R}^n
We show that given a collection of $A$ lines in $\mathbb{R}^n$, $n\geq2$, the maximum number of their joints (points incident to at least $n$ lines whose directions form a linearly independent set) is $O(A^{n/(n-1)})$. An analogous result for smooth algebraic curves is also proven.
Gespeichert in:
Veröffentlicht in: | SIAM journal on discrete mathematics 2010-10, Vol.23 (4), p.2211-2213 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that given a collection of $A$ lines in $\mathbb{R}^n$, $n\geq2$, the maximum number of their joints (points incident to at least $n$ lines whose directions form a linearly independent set) is $O(A^{n/(n-1)})$. An analogous result for smooth algebraic curves is also proven. |
---|---|
ISSN: | 0895-4801 1095-7146 |
DOI: | 10.1137/090763160 |