On the 1.1 edge-coloring oF multigraphs
A new upper bound is proved for the chromatic index $q^* ( G )$ of multigraphs $G = ( V,E )$. Let $d ( G )$ be the maximum degree of $G$, and let \[ p ( G ) = \text{MAX} \{ \lceil 2 | E(X) |/ ( | X | - 1) \rceil :X \subset V, | X | \ne 1\,\text{and odd} \} \] where $E( X )$ is the set of edges in th...
Gespeichert in:
Veröffentlicht in: | SIAM journal on discrete mathematics 1990-08, Vol.3 (3), p.391-410 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new upper bound is proved for the chromatic index $q^* ( G )$ of multigraphs $G = ( V,E )$. Let $d ( G )$ be the maximum degree of $G$, and let \[ p ( G ) = \text{MAX} \{ \lceil 2 | E(X) |/ ( | X | - 1) \rceil :X \subset V, | X | \ne 1\,\text{and odd} \} \] where $E( X )$ is the set of edges in the subgraph of $G$ induced by $X$. The upper bound is expressed in terms of the two trivial lower bounds $d ( G )$ and $p ( G )$ as follows: \[ q^* ( G )\leqq \text{MAX} \{ p ( G ), \lfloor 1.1 d ( G ) + 0.8 \rfloor \}. \] The proof yields an algorithm which edge-colors any given multigraph $G$ with at most $\lfloor 1.1q^* ( G ) + 0.8 \rfloor $ colors. The running time is $O ( | E | ( d ( G ) + | V | ) )$ and the storage space is $O ( | E | )$. |
---|---|
ISSN: | 0895-4801 1095-7146 |
DOI: | 10.1137/0403035 |