An Upper Bound on the Diameter of a Graph from Eigenvalues Associated with Its Laplacian
The authors give a new upper bound for the diameter $D( G )$ of a graph $G$ in terms of the eigenvalues of the Laplacian of $G$. The bound is \[ D ( G ) \leq \left\lfloor \frac{\text{cosh}^{ - 1} ( n - 1 )}{\text{cosh}^{ - 1} ( \frac{\lambda _n + \lambda _2 }{\lambda _n - \lambda _2 } )} \right\rflo...
Gespeichert in:
Veröffentlicht in: | SIAM journal on discrete mathematics 1994-05, Vol.7 (3), p.443-457 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors give a new upper bound for the diameter $D( G )$ of a graph $G$ in terms of the eigenvalues of the Laplacian of $G$. The bound is \[ D ( G ) \leq \left\lfloor \frac{\text{cosh}^{ - 1} ( n - 1 )}{\text{cosh}^{ - 1} ( \frac{\lambda _n + \lambda _2 }{\lambda _n - \lambda _2 } )} \right\rfloor + 1, \] where $0 \leq \lambda _2 \leq \cdots \leq \lambda _n $ are the eigenvalues of the Laplacian of G and where $\lfloor {} \rfloor $ is the floor function. |
---|---|
ISSN: | 0895-4801 1095-7146 |
DOI: | 10.1137/S0895480191217776 |