Completely Convex Functions and Convergence
A function $f(x)$ is completely convex (c.c.) on $[0,1]$ if $( - 1)^k f^{(2k)} (x) \geqq 0$ for $k \geqq 0$ and all $x$ in $[0,1]$. This paper studies the convergence of the partial sums of the Maclaurin series of the function; in particular, how quickly the partial sums turn into a c.c. function. I...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 1979-03, Vol.10 (2), p.292-296 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A function $f(x)$ is completely convex (c.c.) on $[0,1]$ if $( - 1)^k f^{(2k)} (x) \geqq 0$ for $k \geqq 0$ and all $x$ in $[0,1]$. This paper studies the convergence of the partial sums of the Maclaurin series of the function; in particular, how quickly the partial sums turn into a c.c. function. It is shown that no matter where the series is truncated, the resulting partial sum is a completely convex function in at least the interval $[0,{{\sqrt {10} } / 5}]$. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/0510028 |