Completely Convex Functions and Convergence

A function $f(x)$ is completely convex (c.c.) on $[0,1]$ if $( - 1)^k f^{(2k)} (x) \geqq 0$ for $k \geqq 0$ and all $x$ in $[0,1]$. This paper studies the convergence of the partial sums of the Maclaurin series of the function; in particular, how quickly the partial sums turn into a c.c. function. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 1979-03, Vol.10 (2), p.292-296
1. Verfasser: Mugler, Dale H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A function $f(x)$ is completely convex (c.c.) on $[0,1]$ if $( - 1)^k f^{(2k)} (x) \geqq 0$ for $k \geqq 0$ and all $x$ in $[0,1]$. This paper studies the convergence of the partial sums of the Maclaurin series of the function; in particular, how quickly the partial sums turn into a c.c. function. It is shown that no matter where the series is truncated, the resulting partial sum is a completely convex function in at least the interval $[0,{{\sqrt {10} } / 5}]$.
ISSN:0036-1410
1095-7154
DOI:10.1137/0510028