Chebyshev systems of minimal degree
Let $F = \{ {f_i } \}_{i = 0}^n $ be a set of continuous functions on $[a,b]$, and let $F^ * = \{ {f_i f_j } \}_{i,j = 0}^n $. We determine conditions on $F$ which are necessary and sufficient for the set $F^ * $ to be a Chebyshev system on $[a,b]$ consisting of exactly $2n + 1$ distinct functions....
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 1984, Vol.15 (1), p.166-169 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $F = \{ {f_i } \}_{i = 0}^n $ be a set of continuous functions on $[a,b]$, and let $F^ * = \{ {f_i f_j } \}_{i,j = 0}^n $. We determine conditions on $F$ which are necessary and sufficient for the set $F^ * $ to be a Chebyshev system on $[a,b]$ consisting of exactly $2n + 1$ distinct functions. The results have applications in the field of experimental design. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/0515013 |