Chebyshev systems of minimal degree

Let $F = \{ {f_i } \}_{i = 0}^n $ be a set of continuous functions on $[a,b]$, and let $F^ * = \{ {f_i f_j } \}_{i,j = 0}^n $. We determine conditions on $F$ which are necessary and sufficient for the set $F^ * $ to be a Chebyshev system on $[a,b]$ consisting of exactly $2n + 1$ distinct functions....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 1984, Vol.15 (1), p.166-169
Hauptverfasser: GRANOVSKY, B. L, PASSOW, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $F = \{ {f_i } \}_{i = 0}^n $ be a set of continuous functions on $[a,b]$, and let $F^ * = \{ {f_i f_j } \}_{i,j = 0}^n $. We determine conditions on $F$ which are necessary and sufficient for the set $F^ * $ to be a Chebyshev system on $[a,b]$ consisting of exactly $2n + 1$ distinct functions. The results have applications in the field of experimental design.
ISSN:0036-1410
1095-7154
DOI:10.1137/0515013