On the eigenvalues of a certain integral equation
It is shown that the integral equation \[ \int_0^\infty {f(t)} \frac{{\sin (x - t)}} {{\pi (x - t)}}dt = \lambda f(x)\quad (x > 0)\] has a solution $f$ for any (complex) $\lambda $, excluding the real numbers $\lambda \leq 0$, $\lambda > 1$. The closure of the set of eigenvalues, i.e., the spe...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 1984-07, Vol.15 (4), p.712-717 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that the integral equation \[ \int_0^\infty {f(t)} \frac{{\sin (x - t)}} {{\pi (x - t)}}dt = \lambda f(x)\quad (x > 0)\] has a solution $f$ for any (complex) $\lambda $, excluding the real numbers $\lambda \leq 0$, $\lambda > 1$. The closure of the set of eigenvalues, i.e., the spectrum of the integral operator (over all functions in its domain) is then the entire complex plane. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/0515054 |