On the eigenvalues of a certain integral equation

It is shown that the integral equation \[ \int_0^\infty {f(t)} \frac{{\sin (x - t)}} {{\pi (x - t)}}dt = \lambda f(x)\quad (x > 0)\] has a solution $f$ for any (complex) $\lambda $, excluding the real numbers $\lambda \leq 0$, $\lambda > 1$. The closure of the set of eigenvalues, i.e., the spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 1984-07, Vol.15 (4), p.712-717
1. Verfasser: LOGAN, B. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that the integral equation \[ \int_0^\infty {f(t)} \frac{{\sin (x - t)}} {{\pi (x - t)}}dt = \lambda f(x)\quad (x > 0)\] has a solution $f$ for any (complex) $\lambda $, excluding the real numbers $\lambda \leq 0$, $\lambda > 1$. The closure of the set of eigenvalues, i.e., the spectrum of the integral operator (over all functions in its domain) is then the entire complex plane.
ISSN:0036-1410
1095-7154
DOI:10.1137/0515054