On some conjectures of Turcotte, Spence, Bau, and Holmes

Turcotte, Spence, and Bau [Internat. J. Heat Mass Transfer, 25 (1982), pp. 699-706] contains conjectures concerning the equation \[ V'' = {{(V^2 - A(1 - X^2 ))} 2}\] with boundary conditions $V( - 1) = V(1) = 0$, where $A$ is a nonnegative parameter. For large $A$ an appropriate asymptotic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 1989-05, Vol.20 (3), p.634-642
Hauptverfasser: HASTINGS, S. P, TROY, W. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Turcotte, Spence, and Bau [Internat. J. Heat Mass Transfer, 25 (1982), pp. 699-706] contains conjectures concerning the equation \[ V'' = {{(V^2 - A(1 - X^2 ))} 2}\] with boundary conditions $V( - 1) = V(1) = 0$, where $A$ is a nonnegative parameter. For large $A$ an appropriate asymptotic expansion results in a version of the first Painleve transcendent, namely $Y'' = {{(Y^2 - s)} / 2}$ seeking a solution such that $Y(0) = 0$, $Y(s) - \sim \sqrt s $ as $s \to \infty $. This was studied extensively by Holmes and Spence, who conjectured that there are only two solutions. In this paper proofs of these conjectures are provided. During one of these proofs it is shown how a computer language for symbol manipulation, such as MACSYMA, can be used in a mathematically rigorous analysis.
ISSN:0036-1410
1095-7154
DOI:10.1137/0520045