Singular Perturbation Theory for Homoclinic Orbits in a Class of Near- Integrable Dissipative Systems
This paper presents a new unified theory of orbits homoclinic to resonance bands in a class of near-integrable dissipative systems. It describes three sets of conditions, each of which implies the existence of homoclinic or heteroclinic orbits that connect equilibria or periodic orbits in a resonanc...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 1995-11, Vol.26 (6), p.1611-1643 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a new unified theory of orbits homoclinic to resonance bands in a class of near-integrable dissipative systems. It describes three sets of conditions, each of which implies the existence of homoclinic or heteroclinic orbits that connect equilibria or periodic orbits in a resonance band. These homoclinic and heteroclinic orbits are born under a given small dissipative perturbation out of a family of heteroclinic orbits that connect pairs of points on a circle of equilibria in the phase space of the nearby integrable system. The result is a constructive method that may be used to ascertain the existence of orbits homoclinic to objects in a resonance band, as well as to determine their precise shape, asymptotic behavior, and bifurcations in a given example. The method is a combination of the Melnikov method and geometric singular perturbation theory for ordinary differential equations. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/S0036141093245422 |