Singular Perturbation Theory for Homoclinic Orbits in a Class of Near- Integrable Dissipative Systems

This paper presents a new unified theory of orbits homoclinic to resonance bands in a class of near-integrable dissipative systems. It describes three sets of conditions, each of which implies the existence of homoclinic or heteroclinic orbits that connect equilibria or periodic orbits in a resonanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 1995-11, Vol.26 (6), p.1611-1643
1. Verfasser: Kovac ic, Gregor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new unified theory of orbits homoclinic to resonance bands in a class of near-integrable dissipative systems. It describes three sets of conditions, each of which implies the existence of homoclinic or heteroclinic orbits that connect equilibria or periodic orbits in a resonance band. These homoclinic and heteroclinic orbits are born under a given small dissipative perturbation out of a family of heteroclinic orbits that connect pairs of points on a circle of equilibria in the phase space of the nearby integrable system. The result is a constructive method that may be used to ascertain the existence of orbits homoclinic to objects in a resonance band, as well as to determine their precise shape, asymptotic behavior, and bifurcations in a given example. The method is a combination of the Melnikov method and geometric singular perturbation theory for ordinary differential equations.
ISSN:0036-1410
1095-7154
DOI:10.1137/S0036141093245422