On the Dirichlet Boundary Value Problem for a Degenerate Parabolic Equation

The Perron method for degenerate parabolic equations like $u_t = {\operatorname{div}}(|\nabla u|^{p - 2} \nabla u)$ is studied. The regular boundary points for the Dirichlet problem are characterized in terms of barriers. In the particular case of the space-time cylinder $G \times (0,T)$ , a geometr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 1996-05, Vol.27 (3), p.661-683
Hauptverfasser: Kilpeläinen, T., Lindqvist, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Perron method for degenerate parabolic equations like $u_t = {\operatorname{div}}(|\nabla u|^{p - 2} \nabla u)$ is studied. The regular boundary points for the Dirichlet problem are characterized in terms of barriers. In the particular case of the space-time cylinder $G \times (0,T)$ , a geometric characterization in terms of a Wiener-type test is given for regularity.
ISSN:0036-1410
1095-7154
DOI:10.1137/0527036