On the Dirichlet Boundary Value Problem for a Degenerate Parabolic Equation
The Perron method for degenerate parabolic equations like $u_t = {\operatorname{div}}(|\nabla u|^{p - 2} \nabla u)$ is studied. The regular boundary points for the Dirichlet problem are characterized in terms of barriers. In the particular case of the space-time cylinder $G \times (0,T)$ , a geometr...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 1996-05, Vol.27 (3), p.661-683 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Perron method for degenerate parabolic equations like $u_t = {\operatorname{div}}(|\nabla u|^{p - 2} \nabla u)$ is studied. The regular boundary points for the Dirichlet problem are characterized in terms of barriers. In the particular case of the space-time cylinder $G \times (0,T)$ , a geometric characterization in terms of a Wiener-type test is given for regularity. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/0527036 |