Intertwining Multiresolution Analyses and the Construction of Piecewise-Polynomial Wavelets
Let $(V_p )$ be a local multiresolution analysis of $L^2 ({\bf R})$ of multiplicity $r \geq 1$, i.e., $V_0 $ is generated by $r$ compactly supported scaling functions. If the scaling functions generate an orthogonal basis of $V_0 $, then $(V_p )$ is called an orthogonal multiresolution analysis. We...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 1996-11, Vol.27 (6), p.1791-1815 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $(V_p )$ be a local multiresolution analysis of $L^2 ({\bf R})$ of multiplicity $r \geq 1$, i.e., $V_0 $ is generated by $r$ compactly supported scaling functions. If the scaling functions generate an orthogonal basis of $V_0 $, then $(V_p )$ is called an orthogonal multiresolution analysis. We prove that there exists an orthogonal local multiresolution analysis $(V'_p )$ of multiplicity $r'$ such that \[V_q \subset V'_0 \subset V_{q + n} \] for some integers $q \geq 0$, $n \geq 1$, and $r' > 1$. In particular, this shows that compactly supported orthogonal polynomial spline wavelets and scaling functions (of multiplicity $r' > 1$) of arbitrary regularity exist, and we give several such examples. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/S0036141094276160 |