An Inequality Involving the Generalized Hypergeometric Function and the Arc Length of an Ellipse

In this paper we verify a conjecture of M. Vuorinen that the Muir approximation is a lower approximation to the arc length of an ellipse. Vuorinen conjectured that $f(x)={}_{2}F_{1}({\frac{1}{2}},-{\frac{1}{2}};1;x)-[(1+(1-x)^{3/4})/2]^{2/3}$ is positive for $x\in (0,1)$. The authors prove a much st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2000, Vol.31 (3), p.693-699
Hauptverfasser: Barnard, Roger W., Pearce, Kent, Richards, Kendall C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we verify a conjecture of M. Vuorinen that the Muir approximation is a lower approximation to the arc length of an ellipse. Vuorinen conjectured that $f(x)={}_{2}F_{1}({\frac{1}{2}},-{\frac{1}{2}};1;x)-[(1+(1-x)^{3/4})/2]^{2/3}$ is positive for $x\in (0,1)$. The authors prove a much stronger result which says that the Maclaurin coefficients of f are nonnegative. As a key lemma, we show that _{3}F_{2}(-n,a,b;1+a+b,1+\epsilon -n;1) > 0$ when $0 < ab/(1+a+b) < \epsilon < 1$ for all positive integers n.
ISSN:0036-1410
1095-7154
DOI:10.1137/S0036141098341575