An Inequality Involving the Generalized Hypergeometric Function and the Arc Length of an Ellipse
In this paper we verify a conjecture of M. Vuorinen that the Muir approximation is a lower approximation to the arc length of an ellipse. Vuorinen conjectured that $f(x)={}_{2}F_{1}({\frac{1}{2}},-{\frac{1}{2}};1;x)-[(1+(1-x)^{3/4})/2]^{2/3}$ is positive for $x\in (0,1)$. The authors prove a much st...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2000, Vol.31 (3), p.693-699 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we verify a conjecture of M. Vuorinen that the Muir approximation is a lower approximation to the arc length of an ellipse. Vuorinen conjectured that $f(x)={}_{2}F_{1}({\frac{1}{2}},-{\frac{1}{2}};1;x)-[(1+(1-x)^{3/4})/2]^{2/3}$ is positive for $x\in (0,1)$. The authors prove a much stronger result which says that the Maclaurin coefficients of f are nonnegative. As a key lemma, we show that _{3}F_{2}(-n,a,b;1+a+b,1+\epsilon -n;1) > 0$ when $0 < ab/(1+a+b) < \epsilon < 1$ for all positive integers n. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/S0036141098341575 |