Uniqueness of Equilibrium Configurations in Solid Crystals
In this article, under suitable assumptions, it is proved that $ \inf_{\u \in \calUlambda} E[\u]$ is dual to $\sup_{(a,b)} \{ \int_\Omega a(\F(\x)) d\x + \int_\Lambda b(\y) d\y\},$ where, $E[\u]:= \int_\Omega (h(\det D\u) -\F \cdot \u) d\x.$ Here, the infimum is performed over $\calUlambda$, the set...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2000, Vol.32 (3), p.465-492 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, under suitable assumptions, it is proved that $ \inf_{\u \in \calUlambda} E[\u]$ is dual to $\sup_{(a,b)} \{ \int_\Omega a(\F(\x)) d\x + \int_\Lambda b(\y) d\y\},$ where, $E[\u]:= \int_\Omega (h(\det D\u) -\F \cdot \u) d\x.$ Here, the infimum is performed over $\calUlambda$, the set of all orientation-preserving deformations $\u \in C^1(\Omega)^d$ that are homeomorphisms from $\bar \Omega$ onto $\bar \Lambda,$ and the supremum is performed over the set of all upper semicontinuous functions $a,b$ such that $a(\z) +\alpha b(\y) \leq h(\alpha) -\y \cdot \z.$ This duality result turns out to be important in the study of existence and uniqueness of smooth minimizers of E. Note that $M \rightarrow h(\det M)$ is not coercive and thus direct methods of the calculus of variations don't apply here. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/S0036141099356684 |