A duality approach for the boundary variation of Neumann problems
In two dimensions, we study the stability of the solution of an elliptic equation with Neumann boundary conditions for nonsmooth perturbations of the geometric domain. Using harmonic conjugates, we relate this problem to the shape stability of the solution of an elliptic equation with Dirichlet boun...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2002-01, Vol.34 (2), p.460-477 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In two dimensions, we study the stability of the solution of an elliptic equation with Neumann boundary conditions for nonsmooth perturbations of the geometric domain. Using harmonic conjugates, we relate this problem to the shape stability of the solution of an elliptic equation with Dirichlet boundary conditions. As a particular case, we prove the stability of the solution under a topological constraint (uniform number of holes), which is analogous to Sverak's result for Dirichlet boundary conditions. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/S0036141002389579 |