A duality approach for the boundary variation of Neumann problems

In two dimensions, we study the stability of the solution of an elliptic equation with Neumann boundary conditions for nonsmooth perturbations of the geometric domain. Using harmonic conjugates, we relate this problem to the shape stability of the solution of an elliptic equation with Dirichlet boun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2002-01, Vol.34 (2), p.460-477
Hauptverfasser: BUCUR, Dorin, VARCHON, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In two dimensions, we study the stability of the solution of an elliptic equation with Neumann boundary conditions for nonsmooth perturbations of the geometric domain. Using harmonic conjugates, we relate this problem to the shape stability of the solution of an elliptic equation with Dirichlet boundary conditions. As a particular case, we prove the stability of the solution under a topological constraint (uniform number of holes), which is analogous to Sverak's result for Dirichlet boundary conditions.
ISSN:0036-1410
1095-7154
DOI:10.1137/S0036141002389579